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/. Introduction 

One of the main goals of conformational energy 
calculations on polypeptides and proteins is the 
analysis and prediction of their three-dimensional 
structures. These structures are the result of the 
balance of intra- and intermolecular interactions, 
which in turn can be expressed in terms of inter
atomic potential energy functions. In order to gain 
an understanding of the physical reasons for the 
folded structures of these molecules, it is necessary 
to elucidate how the potential energy determines the 
structures themselves, their stability, and their 
dynamic properties.1"3 

Small flexible molecules exist in an ensemble of 
low-energy conformations.4"6 By contrast, a globular 
protein in its native, biologically active state exists 
in a well-defined and recognizable average conforma
tion, with small, but not necessarily harmonic, fluc
tuations around this average.7 There is considerable 
evidence indicating that proteins can fold spontane
ously into their native conformations, both in vivo 
and in vitro. It follows that the native conformation 
is determined by the amino acid sequence, together 
with the characteristic properties of the physical 
environment (solvent medium, temperature) in which 
the molecule folds into its preferred spatial struc-
ture.1,2'5,8"11 The latter idea provides the fundamen
tal assumption that underlies many conformational 
energy computations, viz. that the native conforma
tion is the one for which the/ree energy of the system 
(protein and surroundings) is a minimum. This 
would mean that, at a finite temperature, the oc
cupancy of conformational states will be significantly 
different from zero for only one low potential energy 
minimum, or perhaps for a collection of spatially close 
minima. Although this principle, commonly termed 
the "thermodynamic hypothesis", provides the most 
direct justification for calculations of protein struc
ture, it is by no means universally accepted. Starting 
with the statement of the Levinthal paradox,12'13 

which argues for the impossibility of a complete 
search of conformational space for even a small 
protein, a number of pathway-oriented justifications 
have been made.14-16 
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Historically, the computational analysis of polypep
tide conformations started with simple considerations 
of stereochemistry, based on a hard-sphere poten
tial.1718 Very soon, more realistic potential functions 
were developed, leading to the force fields that are 
in use today (Section II.A). The development of the 
field of conformational energy computations on 
polypeptides and proteins has been surveyed in 
earlier reviews. 1,2'5,819_32 

A very general consideration of calculations of 
polypeptide or protein structures reveals the com
plexity of these systems and the difficulties that may 
be encountered in describing the most structurally 
relevant interactions accurately. The systems of 
interest are described by a large number of degrees 
of freedom, which in turn lead to astronomical 
numbers of possible conformations, even if restricted 
to true (local) minimum-energy conformations. In 
analyzing polypeptide or protein systems with com
putational techniques, one is thus confronted by an 
inherent conflict: better sampling versus more ac
curate descriptions of energetics (the best, in theory, 
including a large number of explicit solvent mol
ecules). A number of studies concentrate primarily 
on one of these issues, while limiting the scope of 
conclusions governed by the second issue. For ex
ample, most of the early molecular dynamics (MD) 
studies of proteins concentrated on sampling the 
neighborhood of the native structure as observed by 
X-ray diffraction (or some other suitable starting 
conformation). Only short times, at best on the order 
of nanoseconds, can be simulated and thus the 
methodological emphasis is placed mainly on the 
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accuracy of the description of the potential energy. 
This involves issues such as solvation and accurate 
but efficient treatment of long-range electrostatic 
interactions. On the other hand, other studies use a 
simplified form of the potential function, for example, 
one without explicit solvent, but a more ambitious 
exploration of conformational space is attempted. 
Clearly, the philosophy of these two types of studies 
is quite different, even though some of the method
ological aspects may at times be very similar if not 
identical. An understanding of these differences is 
necessary for a fair and informative evaluation of 
conformational studies of polypeptides and proteins 
in general. It should also be pointed out that 
progress in methodology for efficient conformational 
search, and in particular, for global optimization, 
would immediately lead to a better study of more 
complex descriptions of potential energy. 

Basic aspects of the computational methodology, 
together with a discussion of some of the current 
problems and of the approaches used to address 
them, are reviewed in section II. The application of 
these methods to a variety of oligopeptide, polypep
tide, and protein structures is summarized in section 
III. Computations on known systems are an impor
tant part of a test and of a verification of the basic 
assumptions of new and established computational 
approaches. In conjunction with experimental meth
ods for structural determination, such as X-ray 
crystallography and solution NMR spectroscopy, 
computations are also an essential tool of structural 
refinement. 

//. Methodology 

A. Force Fields 

1. Atomic Potential Functions 
Various parameterizations of molecular mechanics 

potential functions have been derived for computa
tions on polypeptides. These include those used in 
the AMBER program,3334 CHARMM,35 DISCOVER,36 

ECEPP,3738 ENCAD,3940 GROMOS,41 AMBER/OPLS,42 

etc. The basic structure of these force fields is similar 
in all of them, as well as in force fields used in 
computations of small organic molecules, e.g., MM243,44 

and MM3.45-47 The MM2 force field has also been 
generalized to treat polypeptides,48 but its use has 
not been extensive. 

It is important to distinguish between the force 
fields themselves and the computer programs used 
to implement them, because a one-to-one correspon
dence does not always exist. For example, the 
DISCOVER program also has the option of imple
menting the force field of Kollman and co-workers, 
often termed the AMBER force field. The program 
Macromodel of Still and co-workers49 uses versions 
of the MM2, AMBER/OPLS, and AMBER* 50 force 
fields, some of which can be applied to polypeptide 
systems. The program X-PLOR51'52 has used versions 
of the CHARMM force field. Similarly, there are 
several implementations of the ECEPP force field, 
including those in the KONF90,53 ICM,54"56 and 
FANTOM57 computer programs. 

The force fields used in all of these programs are 
expressed in terms of classical empirical potential 

functions, and are written as a sum of several 
components. The mathematical form of each term 
is based largely on a phenomenological concept 
concerning the nature of the energy term, expressed 
in a manner that renders the function efficient for 
computational programming. The constants that 
describe molecular geometry (i.e., bond lengths and 
bond angles) and the strength of particular inter
atomic interactions are generally parameterized on 
empirical structural (e.g., crystallographic), spectro
scopic (e.g., force constants), and thermodynamic 
information available from small organic molecules 
or relatively simple solutions (as, for example, in the 
OPLS42 potential). The functions may also include 
some data derived from quantum mechanical com
putations (most often the partial atomic charges). The 
potential energy is expressed in the form of atom-
centered potentials, with the energy of the molecule 
computed as a sum over all pairwise interactions. 
This description is generic and applies to some, but 
by no means all, of the aspects of the force fields 
mentioned above. Alternative formulations, where 
fairly new forms of the interaction terms have been 
proposed, were reported recently.5859 Hagler and 
Ewig have reviewed the field extensively, including 
the most recent advances.60 

As an illustrative example, we summarize here the 
formulation of the ECEPP force field37'38-61'62 derived 
at Cornell University. Very similar forms, but with 
different parameters, are used in the other potential 
energy functions mentioned. The intramolecular 
energy is given by the expression: 

u=2X, 
I*J 

„0\12 _0\6' 

>.\rvl 
+ X* 

/_0\12 
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where ey and r0, are the potential depth and position 
of the minimum of the pair interaction (the 12-6 
expression pertains to the nonbonded energy, and the 
12-10 expression to the hydrogen-bonding energy), 
qt is the partial atomic charge on atom i, D is the 
dielectric constant, rg is the distance between the two 
interacting atoms, Ak is the barrier height for rotation 
around the &th bond, #k is the dihedral or torsion 
angle, and n is the rc-fold degeneracy of the torsional 
potential. The variable dihedral angles [(<p,rp,(o) for 
the backbone and %s for the side chains] are defined 
in ref 5. In ECEPP, the bond lengths and bond 
angles are fixed at experimental values. The original 
form of ECEPP was published in 1975.37 It was 
upgraded in 1983 and 1984 (ECEPP/2)61-62 and in 
1992 (ECEPP/3),38 as improved experimental data 
became available for its parameterization. Indepen
dently, Momany and co-workers developed their own 
updated version (ECEPP83).63 

Other formulations of the potential energy function 
(e.g., those used in AMBER, CHARMM, or DIS
COVER) include terms that allow for bond stretching 
and bond angle bending, and possibly for other 
deformations, such as the out-of-plane deformation 
of the peptide bond, i.e. for flexible geometry. Hence, 
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eq 1 may be augmented by terms of the form: 

U = |X*T6(b - b0)
2 + | 2 X ( t - r0)

2 + 
2 X a - A 0 ) 2 (2) 

where the terms refer to bond stretching, bond angle 
bending, and out-of-plane deformation (often imple
mented as improper dihedral angle terms33,35), re
spectively. 

In principle, it is more rigorous to include the terms 
in eq 2 because molecules are not completely rigid 
(in their bond lengths and bond angles, for example). 
Allowing for flexibility is a necessity when details of 
the molecular geometry must be determined in small, 
highly substituted organic molecules, because most 
local steric overlaps can be relieved (fully or partially) 
only by distortions of the geometry. On the other 
hand, the consideration of flexible geometry may be 
less helpful in the static structural analysis of oli
gopeptide and protein structures, because constraints 
may be relieved by other means. A discussion of this 
issue can be found elsewhere.64-67 However, molecu
lar dynamics trajectories that use rigid bond lengths 
and bond angles appear qualitatively distorted when 
compared with those using full flexibility or only rigid 
bond lengths.68 

The complete description of the energy of a polypep
tide must also include its interaction with the solvent. 
The most direct approach to accomplish this is by use 
of a number of explicit water or, in general, solvent 
molecules. These solvent molecules are often de
scribed by potentials of identical form to those in eqs 
1 and 2; this applies to both the solvent-solvent and 
the peptide—solvent interactions. A number of water 
models have been developed and used in simulations 
of hydrated polypeptides and proteins.40,69,70 These 
models give a fair description of some structural and 
thermodynamic properties of bulk water, although 
usually within a narrow range of temperature and 
pressure,71 while remaining relatively simple. In 
spite of its simplicity, explicit inclusion of solvent 
molecules greatly increases the computational time 
needed to study a polypeptide or protein system. 
Thus, most studies of this type have been limited to 
simulations of restricted conformational explorations. 
Important exceptions are calculations of free energy 
differences by solution simulation using MD or Monte 
Carlo (MC) algorithms; these have been reviewed 
recently,72 and only a few examples will be examined 
in this review in section II.C. The computational 
complexity of explicit solvent calculations has also 
motivated the development of implicit models for 
solvation, and these are described in section II.A.3. 

The potential forms discussed above usually in
clude all atoms of a polypeptide molecule explicitly, 
while some may even include additional lone pair or 
dummy atoms to improve aspects of the interaction, 
e.g., the extra interaction centers around sulfur 
atoms in the force field developed by Kollman and 
co-workers,33,34 and the early work on the empirical 
potential based on the interactions of electrons and 
nuclei or EPEN.73 However, it is often possible to 
treat some of the atoms, most frequently the nonpolar 
hydrogen atoms, implicitly as part of modified "united 

atoms". The 1975 version of ECEPP was adapted to 
this form in the UNICEPP force field.74 The original 
force field in AMBER had this form,33 but a full-atom 
version was introduced later;34 both versions are 
commonly used by Kollman and co-workers as well 
as by other researchers.72,75 The AMBER/OPLS force 
field of Jorgensen and Tirado-Rives exists only in a 
united atom form.42 These simplifications lead to 
some decrease in computational time, but, of course, 
also represent more approximate forms. 

Another common approximation is the use of a 
cutoff distance for the nonbonded and electrostatic 
interactions. For large molecules, the leading term 
in computational time is given by the first three 
expressions in eq 1. The number of such terms, and 
thus the computational effort, grows with the square 
of the number of atoms. When using interaction 
distance cutoffs, the scaling of the computation with 
system size is close to linear, resulting in significant 
savings for the largest systems.35,49,76,77 The use of 
cutoffs represents yet another approximation in the 
description of polypeptide conformational behavior. 

Recently, the results of a number of high quality 
ab initio quantum mechanical calculations on amino 
acids and small peptides have become available.78-80 

These are important for calibration and further 
refinement of the potentials described above. Critical 
comparisons between the ab initio results and em
pirical calculations of terminally blocked alanine (the 
alanine "dipeptide") have been presented.75 

It should be clear from the discussion in this section 
that a number of approximations are often made in 
computational studies of polypeptides and proteins. 
The appropriate balance of approximations is often 
a matter of computational expediency modulated by 
the experience of the researcher. It also depends on 
the goal of the calculation, and the interpretation that 
one wishes to make of its results. The recurrent issue 
of accuracy versus sampling discussed in the Intro
duction is also relevant here. 

2. Simplified Forms of the Potential Function 

The astronomical size of the conformational space 
of even the smallest proteins has motivated the 
development of very simplified potential functions in 
which each amino acid residue is represented by one 
or two interaction points. The parameters describing 
interresidue interactions have come from two 
sources: averaging over atomic level potentials and 
extracting energetics from observed protein struc
tures. 

In their early work on simplified models, Levitt and 
Warshel 81,82 represented residues in terms of two 
centers of interaction that describe the backbone and 
the centroid of the side chain, respectively. The 
parameters describing intra- and interresidue inter
actions were derived by examination of full-atom 
potentials. Their force field also included an ap
proximate description of solvation. A similar ap
proach has been described recently by Liwo et al.83,84 

The method of Pincus and Scheraga used averaged 
residue-residue potentials in the context of imple
menting a cutoff scheme for the ECEPP potential.76 

A similar algorithm, using truncated Fourier series 
fitted to a full-atom force field, was described recently 
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and termed peptide mechanics.85 However, peptide 
mechanics is intended to be used by itself, and not 
necessarily as an alternative to treat long-range 
interactions in a full-atom force field. Thus, this 
simplified model attempts to provide a proper de
scription of local peptide energetics, and interactions 
between nonsequential amino acids use united-
residue forms even at short distances. 

A somewhat different approach was described by 
Head-Gordon and Brooks,86 who developed a reduced 
representation starting from the CHARMM35 force 
field. They represent each amino acid residue by a 
small number of virtual interaction points. To esti
mate interactions between these virtual points, they 
use a multipole expansion with coefficients derived 
from an analysis of point charges in the reference, 
CHARMM, full-atom description. In addition, they 
have presented a treatment for dynamic simulation 
of peptides using this approach, which they name 
virtual rigid-body dynamics. 

A second important source for residue—residue 
effective potentials is the analysis of structures in the 
protein structural databank.87'88 Most often, this is 
done by obtaining an empirical free energy function 
or potential of mean force, based on Boltzmann 
statistics derived from the spatial distribution of 
residues in proteins of known structure. In one 
version of this formalism, the change in free energy 
corresponds to the formation of a contact between a 
given pair of residues. Its numerical values are 
derived from the relative contact frequencies of pairs 
(or even triplets89) of various residues in known 
protein structures, using the quasichemical approxi
mation.90 These contact potentials are particularly 
useful in, but not limited to, studies of lattice models 
of proteins. In other representations, the energy is 
expressed as a function of the interresidue distance, 
and its parameters are derived from the observed 
distance distributions between given residue types 
in proteins.89'91-93 

It is also possible to derive potentials of mean force 
in terms of variables other than distances. To the 
best of our knowledge, the first extraction of effective 
energies for proteins from frequency information (a 
process termed the inverse Boltzmann approach11) 
was made by Pohl using dihedral angles <p and V-1-94 

This approach was clearly premature because less 
than a dozen three-dimensional structures of proteins 
were known at the time. However, the value of this 
work cannot be underestimated, and its influence can 
be found in many of the more statistically robust 
approaches of this nature being used today.11 More 
recently, others95"97 have also started to use 4>-ip-
dependent potentials of mean force in their studies. 

In addition to reducing the number of variable 
coordinates, residue—residue potentials derived from 
protein structural information will contain, in an 
averaged manner, solvation and other effects that are 
difficult to account for explicitly. 

Crippen and co-workers have developed a series of 
simplified potentials for proteins by explicitly fitting 
the parameters in an attempt to make sure that the 
native structure possesses the lowest energy out of 
a given ensemble of alternatives.98"103 The most 
recent approach,103 based on a scheme for efficient 

solution of large systems of coupled inequalities, 
seems as effective as the best in the literature. 

An alternative procedure to extract energy infor
mation from observed structures has been presented 
by Wolynes and co-workers, who derived energy 
functions for simplified protein models by use of 
associative memory Hamiltonians. The resulting 
form of these energy functions can be modified using 
ideas from spin-glass theory, to reduce as much as 
possible the number of false local minima.104'105 This 
is expected to make the multiple-minima problem 
less severe in subsequent calculations using this 
model. 

The tremendous growth of the amount of experi
mental information available from protein structures, 
coupled with the application of more computationally 
rigorous approaches for its analysis, constitutes one 
of the major and most promising recent developments 
in the field of protein structure computations. The 
application of some of these approaches is reviewed 
in section III.E.3. 

3. Interactions with Solvent 

As outlined earlier, the energy of solute-solvent 
and solvent-solvent interactions can be expressed in 
terms of the same force fields as those used to 
calculate the intramolecular conformational energies 
of proteins.106 In addition to the large computational 
cost of including solvation explicitly in conformational 
energy calculations, there are also some conceptual 
problems with a direct generalization of local or 
global energy minimization procedures to the com
plete system of solute and bath of solvent molecules 
(see, for example, the discussion by Schiffer and co
workers107). These conceptual difficulties arise mainly 
because the interactions between a protein molecule 
in solution and the surrounding water molecules are 
generally short-lived. In other words, the positions 
of most water molecules, relative to the protein, are 
not fixed for a specified protein conformation, and 
therefore no unique set of pairwise interactions can 
be computed between atoms of the protein and of the 
solvent. One cannot simply minimize the energy 
with respect to the positions of the solvent molecules 
and effectively "freeze" the water; a thermal average 
is required. Thus, it is not only necessary to compute 
the potential energy of one water bath configuration 
for each conformation of the solute, but the free 
energy, or potential of mean force, of hydration must 
be computed by averaging over a large number of 
configurations of the solvent, using MC or MD 
techniques.25'69'108 Simulations of proteins in baths 
of explicit water- molecules can in principle yield the 
free energy of hydration, together with information 
regarding the dynamics of solutes and solvent. The 
use of simulation methods to study solvent effects on 
polypeptide structure and dynamics has been re
viewed elsewhere.75 

The computational demands of explicit solvent 
simulations preclude their use in studies involving 
extensive searches of the conformational space of a 
polypeptide or protein, e.g., in the search for (global) 
minimum-energy conformations in the absence of 
restraining information. In such cases, a practical 
solution is the use of a mean-field approximation for 
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the free energy of solvation.109 The solute-solvent 
interaction is computed by expressing it as an ap
propriate average over all positions and orientations 
of the solvent molecules for a given conformation of 
the solute, without taking into account the molecular 
nature of the solvent and of details of motions of the 
solvent molecules. This average value may be ob
tained by using simpler implicit hydration models, 
instead of an actual computation over the possible 
solvent configurations. The use of potentials of mean 
force to describe peptide-solvent interactions is, in 
principle, sufficient to study static or thermodynamic 
aspects of peptide structure. However, when study
ing kinetic or dynamic effects, it is also necessary to 
consider the frictional effects of solvation. Coupling 
to a stochastic bath by way of Langevin dynamics is 
one possible method to accomplish the implicit de
scription of this aspect of solvation.25 

It is also important to realize that, in creating an 
implicit model of solvation, the potential energy 
function acquires a hybrid character, because the 
solvent-dependent terms become temperature de
pendent, and thus they have some free energy 
character. More explicitly, the full potential energy 
function110 

E(Xp1Yw)=^pCKp) + t/wp(Xp,Yw) + £7W(YW) (3) 

is replaced by averaging over the solvent coordinates: 

F(^T) = -RT In fe~EmT dYw = CZp(Xp) + 

PMF(Xp1T) (4) 

where Xp and Yw correspond to solute and solvent 
coordinates, respectively. The direct and indirect 
effects of the solvent are all now included in the 
potential of mean force term, PMF(Xp,?1), and it has 
been assumed that the U(Xp) term corresponds to a 
true vacuum potential (e.g., dielectric constant D is 
1). In many applications, solvent effects are sepa
rated into local effects, included in some form of 
potential of mean force, plus electrostatic effects, 
introduced as a modification of the electrostatic 
component of the intramolecular potential. Often, it 
is better not to carry out the partition into terms of 
eq 3, and thus to refer to the full function F(XP,T) as 
the potential of mean force; i.e. it is not always 
possible or practical to separate out a true vacuum 
intramolecular potential. One reason why this sepa
ration is not always helpful is the strong effect of 
highly polarizable solvents, such as water, on elec
trostatic interactions. 

a. Empirical Hydration Models. The principal 
assumption of these models is that the hydration free 
energy can be expressed for every functional group 
of the solute in terms of an averaged free energy of 
interaction of the group with a layer of nearby water 
molecules that form a hydration shell. It is assumed 
that this interaction is specific for each of the various 
types of atoms of the protein or other solute, and that 
the total solute-solvent interaction can be expressed 
additively, as a sum of the free energies of solvation 
for each of the component groups of the solute 
molecule. Several alternative forms have been de
veloped for this purpose. 

i. Accessible Volume Shell Model. In this type of 
the model, the free energy of hydration of any group 
is taken to be proportional to the water-accessible 
volume of a hydration layer surrounding it. This 
layer usually is considered to have the thickness of 
one water molecule. Interactions with the rest of the 
solvent are implicitly included in the empirical 
parameters of the model. The total free energy of 
hydration thus becomes 

GWd = SV i f t (5) 

where Vi is the solvent-accessible fraction of the 
hydration shell of group i, gt is an empirically derived 
free energy parameter for group i, representing the 
"average free energy density", and N is the number 
of groups in the solute molecule. 

Several forms of this model have been derived, 
starting from the early period of conformational 
energy computations, up to recent times.111-115 This 
representation has a simple intuitive physical inter
pretation in terms of molecular nearest-neighbor 
interactions. On the other hand, it contains a 
number of approximations which may be sources of 
error and reduce the speed of computations.116117 

These difficulties have led to the development of 
alternative forms. 

ii. Accessible Surface Area Model. In this formula
tion, the free energy of hydration is assumed to be 
proportional to the solvent-accessible surface area of 
a group,117"120 and is obtained as 

N 

G^ = JAiO1 (6) 
i=l 

where Ai is the solvent-accessible surface area, and 
Oi is an empirically derived free energy density 
parameter. According to Richards,121,122 A; is defined 
as the surface traced by the center of a spherical test 
probe, with a radius equal to that of a solvent 
molecule, as the probe is rolled over the van der 
Waals surface of the molecule. Several recently 
developed algorithms for the rapid calculation of 
accessible surface areas and their derivatives are 
starting to make this approach very efficient123-126 

(two of these124,125 are recent adaptations of analytical 
algorithms first developed by Richmond127). 

Also, a number of approximations to the exact 
surface area have been tried, starting with the 
statistical procedure of Wodak and Janin,128 later 
generalized by Still and co-workers.129 Le Grand and 
Merz have also developed a very fast numerical 
approximation to surface areas and their deriva
tives.130 

Ui. Weighted Contact Model. The key assumptions 
in volume and surface area-based models are the 
proportionality of free energy to the degree of solvent 
exposure and the additive form of the solute—solvent 
potential of mean force, cf. eqs 5 and 6. It has 
recently been proposed that this simplified "physics" 
can just as easily be described by much simpler 
weighted contact models similar to the early ones by 
Gibson and Scheraga131 and by Levitt.82 Sander and 
co-workers have developed two versions of this type 
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of model, and they have applied them in modeling 
and simulation of protein structure.132-134 

In one version of the procedure,134 the free energy 
density parameters, oi, are derived by fitting to 
experimental solvation free energies of amino acid 
side-chain analogs. The quality of this fit is at least 
as good as that achieved with a surface area-based 
model.124 The resulting hydration model was then 
combined with a stochastic dynamics procedure135 to 
simulate the behavior of bovine pancreatic trypsin 
inhibitor (BPTI) in water solution. 

In a second version, parameters were derived by 
the inverse Boltzmann device1192 from solvent acces
sibility data on protein structures. The resulting 
model was used to discriminate between correct and 
incorrect protein folds.133 

iv. Free Energy Parameters. In most forms of the 
hydration shell models, the proportionality constant 
representing the free energy density, Oi (or gd is 
derived as an empirical parameter from G^yd for small 
organic molecules, obtained in turn from observed 
free energies of hydration. A; for these molecules is 
calculated from the molecular geometry. The experi
mental data are usually obtained from solution 
thermodynamic measurements,117,119 but may also be 
derived from conformation-dependent physical prop
erties, such as NMR coupling constants.120 As noted 
above, the protein structural data base itself has been 
used as a source to parameterize a solvation prefer
ence model that uses weighted atomic contacts.133 

Care must be exercised in the selection of the 
thermodynamic data used in the parameterization, 
as discussed by Ooi et al.,117 because there are two 
possible ways in which transfer free energies can be 
obtained, and they refer to distinctly different pro
cesses. In one approach, numerical values are ob
tained from the distribution coefficients of solutes 
between an organic solvent and water.119 These 
parameters model the free energy of transfer of 
amino acid side chains from the interior of the protein 
to aqueous environment, and hence they should be 
used by themselves, without any additional energy 
terms, to describe the total free energy of this process. 
In the second approach, on the other hand, if the 
expression for Ghyd is to be used to supplement the 
solute-solute interaction energies computed by in
tramolecular molecular mechanics forms [i.e., the 
U(Xp) given above], then Ghyd represents only the 
additional interactions of the atoms of the solute with 
water over and above intramolecular solute—solute 
interactions. Consequently, the Ghyd used in this 
manner must be derived from observed free energies 
of transfer of model solutes from gas to aqueous 
solution.117124 Furthermore, these model solutes 
should be small molecules (for example, CH4, CO2, 
(CH3)2CO, etc.) or, in general, rigid molecules, so that 
the assumption that the conformation does not 
change during the transfer (from gas to water) 
remains reasonable. Free energy data from larger, 
flexible molecules would contain contributions due 
to averaging over the conformations of the molecule 
and not just over the positions of the water molecules, 
as is ideal for this type of approach (see eqs 3 and 4 
above and the accompanying discussion.) 

Mention should also be made of the controversial 
reevaluation of solvation and transfer data carried 
out by Sharp et al.136 These authors suggest that a 
correction term to account for differences in the sizes 
of solute and solvent needs to be added to reported 
values of the free energy of transfer. More recently, 
several groups have presented very strong arguments 
against the use of this correction.137'138 

b. Integral Equation Theory. Integral equation 
theories have been used to calculate potentials of 
mean force in water between pairs of chemical 
groups. Several applications have started from ex
tensions of the reference interaction site model 
(RISM) theory of Chandler and Andersen.139 For the 
larger solutes, it is often necessary to invoke a 
superposition approximation. Using this approach, 
Pettitt and Karplus have built hydrated <j>—y> maps 
that compare favorably with those obtained by ex
plicit simulation.140 More recently, the superposition 
approximation has been removed in several studies, 
most notably in an analysis of a simulation of 
melittin, a small protein with 436 atoms.141 A 
comparison of integral equation theory, with and 
without invoking the superposition approximation, 
with explicit solvent simulations has also been car
ried out for the Af-methylacetamide peptide model 
compound.142 An extensive review of the integral 
equation approach for the estimation of solvation 
effects on polypeptide conformation was presented 
recently.143 This review143 also presents an interest
ing comparison between these theories and con
tinuum models such as those based on the Poisson-
Boltzmann equation (see next section). 

c. Electrostatic Interactions and Solvation. 
The solvent environment contributes to the confor
mational energy of a polypeptide not only through 
local solvation effects, as approximated in some of 
the treatments above, but also by its influence on the 
intramolecular force field, because of the dependence 
of the electrostatic term on the dielectric constant 
used. The proper treatment of electrostatic interac
tions in proteins, especially that of the dielectric 
medium, gives rise to a variety of physical and 
mathematical questions. These problems, together 
with current approaches, have been evaluated and 
discussed in several recent reviews.144-148 Only a few 
aspects are summarized here briefly, because of their 
relevance to conformational energy computations. 

The dielectric constant is a macroscopic quantity, 
yet it is applied to a microscopic situation in protein 
computations.144 In the force fields listed in section 
ILA, it has been assumed that the dielectric constant 
in the interior of a folded macromolecule is low, in 
analogy to an organic solvent medium. Accordingly, 
Z) of eq 1 is usually chosen to lie between 2.5 and 4. 
This range has been justified by a theoretical analy
sis149 using the Kirkwood-Frohlich dielectric theory,150 

and it gives satisfactory results in many computa
tions of the intramolecular energy. 

The choice of the dielectric constant is more am
biguous for charges and dipoles located near the 
surface of the protein, i.e. in an inhomogeneous 
environment. It has been pointed out by Warshel 
and Aqvist148 that the value of a dielectric constant 
depends on the property used to define it, so that one 
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must use operational definitions that suit the prob
lem at hand. In the case of a rigid body, the 
interactions of buried charges near a dielectric bound
ary can be treated by classical electrostatic theory, 
in terms of image charges.151 The total electrostatic 
energy of a macromolecular system, including the 
change in this energy upon binding, can be calculated 
numerically in terms of thermodynamic cycles.152 

Charges exposed on the surface of a protein and 
nearby free ions in the solution are located in a high-
dielectric medium, with D — 80 or more in the case 
of an aqueous solution. If the Coulombic law form 
is used for the electrostatic energy (eq 1), there 
should be a transition from the low value of D in the 
interior to the high D in the free solvent. Therefore, 
the use of a distance-dependent dielectric constant 
has been proposed in numerous investigations. A 
simple assumption, used frequently, is tha t D de
pends linearly on the interatomic distance, i.e. D = 
krtj. It has been shown153 that this form results in 
an overestimation of electrostatic forces, especially 
in the case of weak interactions.154 Harvey144 has 
pointed out that "distance-dependent dielectric con
stants and scaled partial charges can mimic solvent 
screening effects on electrostatic energies, at least 
qualitatively, ... but they cannot correctly treat 
electrostatic forces". This limits their usefulness both 
in energy minimization and in simulations.144,151 

A rigorous and computationally feasible approach 
to the treatment of electrostatic interactions in folded 
proteins has been provided by the development of 
algorithms for the numerical solution of the Poisson— 
Boltzmann equation by means of a finite difference 
method.154 The method was first used by Warwicker 
and Watson for the calculation of the electric poten
tial in the active-site cleft of phosphoglycerate mu-
tase.155 A general algorithm has been developed by 
Honig and co-workers to solve the linearized finite-
difference Poisson-Bol tzmann equation (FDPB 
method), allowing for the treatment of intramolecular 
electrostatic interactions as well as for the effects of 
ionic strength.146-152'154,156 It has been implemented 
in the program package DELPHI.156 

In this method, the protein is placed in a cubic box 
divided into a regular grid. The Poisson-Boltzmann 
equation is solved iteratively at every point of the 
grid to find the electric field. A local charge density 
and ionic strength are assigned to each grid point, 
while the dielectric constant is assigned at midpoints 
along the grid lines. Thus, the variation of the 
dielectric response can be presented at atomic resolu
tion if the grid is chosen sufficiently fine.146 This 
eliminates the dilemma of the distance dependence 
of the dielectric constant. 

The FDPB method has been used for numerous 
computations of charge effects in proteins.146 Its 
performance has undergone severe testing,156 in a 
comparison with other methods, for computing the 
interactions of ionized residues in subtilisin BPN'. 
The method reproduces the dependence on ionic 
strength better than other methods. In another test, 
it has been shown that the FDPB method and the 
use of a screened Coulomb potential worked similarly 
in the computation of pK shifts.157 

Vorobjev et al.158 have presented a combined itera
tive and boundary element approach, and a rapidly 
computable approximation thereof,159 for solving the 
nonlinear Poisson-Boltzmann (NLPB) equation. The 
essence of the method is the separation of the 
calculation of the solvent reaction potential from that 
of the potential due to the ion distribution. The 
solvent reaction potential is calculated by using an 
efficient boundary element method. The ion-induced 
potential is then calculated by means of an efficient 
volume integration procedure using an iterative 
solution of the NLPB equation, coupled to the fixed 
molecular and solvent electrostatic potential. The 
method has been tested on oligopeptides and model 
protein solutes. Another recent improvement for the 
solution of the Poisson-Boltzmann equation is the 
use of multiple grids.160 

Methods based on solution of the Poisson-Boltz
mann equation are attractive because they are firmly 
grounded in classical continuum electrostatics. How
ever, they are still an approximation to the system 
of a protein in solution, which is essentially discon
tinuous, and where the boundary between dielectric 
regions161 is not always unambiguously defined. (See 
also section II.A.3.b and the discussion by Marlow 
et al.143) Thus, alternative methodologies have been 
developed, most notably the Langevin dipole-protein 
dipole (LDPD) methods of Warshel and co-workers, 
tha t attempt to reintroduce some of the discrete 
nature of the solvated protein system. This approach 
has been refined and applied to a number of prob
lems, and an extensive review has also appeared 
recently.148 

d. Generalized Born Models. Solvation treat
ments based on some form of continuum electrostat
ics are in some way complementary to empirical shell 
models. However, a simple merger of these models 
cannot be made directly because, in their parameter
ization and development, several effects may have 
been included independently, and thus simply adding 
them up would lead to incorrect weighting of these 
interactions. An early but promising attempt to 
achieve this merger is the generalized Born-surface 
area (GB/SA) method of Still and co-workers.162 

These authors start with the Born equation for the 
free energy of solvation of a simple ion: 

where q is the charge and TB the effective radius of 
the ion, and D is the dielectric constant of the solvent. 
Still et al. generalize the model for polyatomic 
molecules whose electrostatic potential is described 
by point charges. The "local" part of the solvation, 
also known as the cavity term together with effective 
solute-solvent van der Waals interactions, has the 
same form as surface area-based shell models. How
ever, in this treatment the same free energy density 
parameter, in a given solvent, is used for all atom 
types (in this and other treatments, hydrogen atoms 
are often not considered explicitly, except, perhaps, 
in the "vacuum" intramolecular potentials). The 
differences between different atom types will ulti
mately be given by the electrostatic component. In 
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more detail, the total solvation free energy is ex
pressed as 

^so l — ^ cav + ^VdW + G1P0I (8) 

and the contribution of the first two terms has the 
same form as eq 6 above with a single value of a. 
The solute-solvent polarization term is then given 
by 

(9) 

The generalized Born factor is in turn given by 

2-, -,1/2 /GB = ^ + < e x p { - ^ . / ( 2 a / } ] (10) 

where a*, = (aj(X/)1/2 is the geometric mean of the Born 
radii. The Born radii are computed numerically for 
each charged atom of the solute by equating the 
polarization free energy of solvation of each atom i, 
from the expression: 

r - - Ki _ DSL Tpol- (11) 

with the value obtained by numerical integration 
over spherical shells: 

K Krr 

~ 4jtrk
2Vk ~ (?V2) 

rk + {T&)) 
+ • 

max ' AJ 

(12) 

In this expression, Au is the area of the &th shell 
outside the van der Waals envelope created by all 
atoms j ^ i, while 7* and a are the thickness and 
radius of the kt\\ shell, respectively. kmax is defined 
such that a shell of radius r* with k = kmaK + 1 would 
be large enough to surround the entire molecule. If 
it is assumed that a; varies slowly with conformation, 
the more time-consuming numerical integration given 
in eq 12 can be executed every 10 to 20 iterations of 
a minimization or molecular dynamics run. Tests of 
the procedure have been reported for relatively small 
molecules, including terminally blocked alanine (the 
"alanine dipeptide").162 

More recently, Abagyan and Totrov described a 
version more suitable for polypeptide calculations.163 

Sitkoff et al. have parameterized a model that 
combines the FDPB method with a generic surface 
area term, and report accurate reproduction of hy
dration free energies for a set of 67 small mol
ecules.164 Finally, several groups have merged quan
tum mechanical procedures with computations of the 
reaction field arising from a continuum, high dielec
tric, solvent.165-168 

4. Entropy 

The free energy and, thus, the entropy of a single 
conformation is not a well-defined concept in statisti
cal mechanics. However, it is possible to associate a 
statistical weight (and thus, a free energy) to a local 

minimum-energy conformation, or more generally, to 
a region of conformational space. This statistical 
weight is a function not only of the potential energy 
(i.e. the depth of the minimum) but also of the 
conformational entropy, which depends on the shape 
and width of the bottom of the potential well. The 
conformational entropy arises from the fluctuations 
of the independent coordinates used to describe the 
spatial structure of the molecule. Another contribu
tion may arise from the distribution of the polypep
tide among various local minima in the same state, 
i.e. from the existence of conformational microstates.5'7 

These entropic effects occur above and beyond those 
entering from the possible use of temperature-de
pendent potentials of mean force as discussed in the 
previous section. For thermodynamic analysis, what 
follows is equally applicable to a pure intramolecular 
potential energy as well as to the augmented func
tions that include implicit solvation. 

The free energy contribution of small fluctuations 
in dihedral angles (or other variables) around an 
energy minimum can be computed by means of a 
harmonic approximation. The normalized statistical 
weight Wi, which expresses the probability of the ith 
conformation, is given by110'169-170 

rvA/2, 1/2 wt = (l/Z)(2jzRT)*'\det F1)'^ exp(-AC//i?T) (13) 

where AUi is the conformational energy at the ith 
minimum (relative to the lowest energy), R is the gas 
constant, T is the temperature, k is the number of 
variable dihedral angles (degrees of freedom), and Fj 
is the matrix of second derivatives of the energy110 

at the ith minimum. The partition function Z is 
given by 

N 

Z = (2jtRT)kl2^(det Ffm exp(-AU/RT) (14) 

where N is the number of low-energy minima (say, 
AU < 3-5 kcal/mol). 

The conformational free energy and the relative 
free energy at the ith minimum are defined as 

G1 = -RT In wt 

AG, = G1 - Gn 

(15a) 

(15b) 

where Go is the free energy of the conformation of 
lowest potential energy (i.e. the one at AU = 0). The 
relative entropy is 

ASi = (1/T)(AUi - AG1) (16) 

This is equivalent to the definition of librational 
entropy given by Go et al.110,169'170 This method has 
also been generalized for ring structures.171 

The method outlined above can assign a reasonable 
value of conformational entropy to a conformation if 
the fluctuations around the energy minimum are 
small enough, so that the harmonic approximation 
will remain accurate. The basic idea of the method 
has also been adapted to the computation of entropy 
differences between various conformations by means 
of simulation techniques,172'173 in a manner that 
removes some of the limitations of the original 
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approach. Most notably, these authors suggest that, 
at room temperature, the conformational fluctuations 
around a minimum energy conformation can be 
highly unharmonic, and thus, the use of just the 
second derivative will underestimate the entropy. 
They suggest the use of simulation data to construct 
a covariance matrix to serve as an effective harmonic, 
but temperature dependent, replacement of the in
verse of the second derivative matrix: 

S1 = ln(det a) + C (17) 

where C does not depend on the coordinates, and the 
covariance matrix collects the fluctuations of the 
coordinates q 

°ki = ((Qk ~ (Qk)XQi ~ (Qi))) (18) 

Clearly the magnitude of these fluctuations de
pends on the temperature at which the simulation 
is carried out; i.e., a = o(T). This treatment reduces 
to the Go-Scheraga procedure when the temperature 
of the simulation is very low, or when the energy 
surface is indeed purely harmonic. The analysis of 
Karplus and Kushick still relies on a harmonic form 
of the fluctuations; hence, Di NoIa et al. generalized 
their approach by collecting full statistical distribu
tion information about the fluctuations of the coor
dinates during a simulation.174 In the approach of 
Di NoIa et al., correlations between variables, cor
responding to the off-diagonal elements of the covar
iance matrix, are still treated as effective harmonics: 

_ ., R /detcn 
S ; = - i ? I fdqk P{qk) In P(qk) + - I n 1 (19) 

k 2 n< 
\ k 

kk\ 

where P{qk) is a histogram of the variable k obtained 
from the simulation. Rojas et al. have proposed 
another procedure to correct the quasiharmonic ap
proximation of Karplus and Kushick, by self-consis-
tently incorporating higher order correlations or 
moments of the coordinate fluctuations into the 
entropy expressions.175 

Similar procedures as those outlined above have 
been used to analyze normal mode vibrational mo
tions of a protein176 and to estimate the vibrational 
entropy of folded proteins.177 

All the above approaches tend to break down when 
the definition of a "conformation" reasonably includes 
more than one local minimum. An attempt to ad
dress this issue is the scanning simulation tech
nique,178-180 and the related local states method to 
calculate the conformational entropy from a sample 
of conformations generated by either Monte Carlo181 

or molecular dynamics simulation techniques.182 

For the limit of very flexible chains, a reasonable 
estimation of the conformational entropy can be 
obtained by neglecting long-range interactions com
pletely.183-186 This limit is often used to estimate 
properties of the unfolded or statistical coil state of 
globular proteins. 

The methods discussed thus far give relative esti
mates of entropy and free energy. An interesting 

method to estimate the absolute entropy, is the 
procedure of Stoessel and Nowak.187 These authors 
use a harmonic system as a reference and compute 
free energy and entropy by stepwise perturbation of 
this system (whose thermodynamic quantities can be 
evaluated analytically) to the system of interest. 
This algorithm, thus, is closely related in concept to 
the free energy perturbation simulation techniques 
(reviewed by Kollman72). 

B. Treatment of the Multiple-Minima Problem 

According to the thermodynamic hypothesis that 
followed from Anfinsen's experiments on ribonu-
clease,188 a stable protein conformation corresponds 
to the lowest minimum of the empirical conforma
tional "free" energy (including the effect of hydration), 
termed the global minimum. The multidimensional 
surface that describes the energy of the polypeptide 
chain as a function of the internal variables, however, 
has an astronomically large number of local minima. 
Except for very simple systems with only a few 
variables, e.g. oligopeptides with less than about four 
residues (without explicit solvent and in the rigid-
geometry approximation), it is not possible to explore 
the entire surface systematically in order to find the 
lowest minimum. Therefore, a major problem of 
conformational energy computations remains the 
efficient search of conformational space to locate the 
region that contains a potential well around the 
global minimum, or at least reduce the number of 
low-energy regions under consideration to a compu
tationally manageable number.189 Once such a po
tential well is located, it is possible to determine the 
position of its local minimum efficiently, using any 
of a great variety of function-optimizing computer 
algorithms.190 Alternatively, if one is able to select 
a relatively small number of different low-energy 
regions to be considered further, energy minimization 
can be carried out for all of them, and the relative 
energies of the minima can be compared directly. It 
should be noted that, for small, flexible, peptides, 
finding and analyzing, in principle, all the relevant, 
low-energy, local minima, in addition to the global 
one, is also an important part of a correct description 
of their conformational behavior. 

In an interesting theoretical analysis of the folding 
process of proteins, Zwanzig et al.191 have studied the 
Levinthal paradox,1213 and pointed out that a biased 
random search, with a small but realistic bias favor
ing correctly folded local states, can enormously 
reduce the number of conformations that have to be 
explored by the polypeptide chain during folding. 
Possible numerical evidence for this proposal is 
contained in the lattice simulations of Skolnick and 
Kolinski192 described in section III.E.3. On the other 
hand, it remains to be seen whether the results of 
the analysis of Zwanzig et al. can be exploited in 
practice in the design of general computational 
algorithms for search of folded structures. Recently, 
the stochastic model of Zwanzig et al. has been used 
to analyze the time scale of protein conformational 
changes.193 

A large variety of procedures have been developed 
to search multidimensional conformational space, in 
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order to focus the effort in the region containing the 
global energy minimum, and thereby to provide an 
approximate structure to which local energy mini
mization can be applied. Usually these procedures 
are based on one or more of the following ap
proaches: (a) reorganization and breakdown of the 
computation into smaller steps, (b) the use of statisti
cal or heuristic information, derived from known 
protein structures, (c) a simplified formulation of the 
potential, (d) stochastic search procedures using 
Monte Carlo or molecular dynamics, or (e) a math
ematical transformation of the potential surface. 
Some of these procedures are described here. In most 
instances, atomic level descriptions of globular pro
teins cannot be used because of their large size; thus, 
either an atomic level model of a smaller peptide (or 
a much simplified model of an entire protein) tends 
to be the test system of choice. 

1. Chain-Growth Procedures 
The most direct conformational search method 

would be a systematic and exhaustive enumeration 
of all possible conformations, perhaps given a finite 
discretization of each variable (for example, see the 
early work of N6methy and Scheraga18). Clearly, this 
procedure is practical only when one has a very small 
number of variables, or when there is a sufficient 
number of constraints. The build-up method194'195 

starts conceptually as a truncated systematic search. 
The first approximation is that the possible states of 
each individual amino acid are fairly represented 
initially by a small set of single-residue low-energy 
minima. The number of these, in the ECEPP de
scription, varies from less than 10 for alanine or 
proline, up to a few hundred for lysine or argi-
nine.196197 Even this approximation could not pre
vent an exponential explosion in the number of 
possible states as one constructs a long polypeptide; 
thus, the second key assumption is that it is possible 
to ignore partial conformations that have energies 
higher than some preassigned value above that of the 
current lowest one; i.e., by using an energy cutoff. 

In the usual version of the build-up procedure, the 
polypeptide is broken into small fragments for each 
of which the number of conformations is sufficiently 
small, viz. at most a few hundred or thousand, and 
the energies of all these fragments are minimized. 
These small fragments are then combined into larger 
ones, and the energies of the conformations of the 
latter are in turn minimized. At each stage, an 
ensemble of low-energy structures, within a cutoff of 
the global minimum, is retained. The method is 
based on the assumption that short-range interac
tions play a dominant role in determining the con
formation of a polypeptide or protein.5,189 As the 
fragments become larger and larger, more and more 
of the long-range interactions are built into the 
computations. Detailed descriptions of several ver
sions of the method have been given.198""200 

As detailed in section III, this procedure has been 
applied in a number of cases. The method appears 
to work well for small oligopeptides, and for very 
special cases of larger ones, but its application 
quickly becomes unmanageable for polypeptides with 
10 or more amino acids in the absence of constraining 
information. 

A modified approach to the build-up procedure 
relies on a generalization of dynamic program
ming.201'202 It makes use of the combinatorial opti
mization of a finite number of discrete states that 
correspond to local minima of single residues.197 

Local optimization is not always applied at every 
stage of polypeptide chain growth, and this results 
in considerable speed—up over the usual build-up 
implementations.201,202 As in the build-up procedure 
itself, however, long-range interactions cannot be 
introduced at an early stage, and thus the procedure 
will not work when these interactions eventually 
overwhelm short-range ones. This is a feature of all 
build-up-like or dynamic programming methods and 
limits their applicability in unconstrained problems 
to relatively small oligopeptides, and to polypeptides 
interacting with a mostly rigid protein (for an ex
ample, see the GROW procedure for analysis of 
peptide—protein complexes203). Pincus and co-work
ers have used their version of the method extensively 
and their work has recently been reviewed.200 

In similar work, Marshall and co-workers used a 
constrained systematic search204 to derive conforma
tions of the cyclic undecapeptide cyclosporin A from 
NMR information.205 Their computations show how 
elimination of incompatible conformations early dur
ing the search can result in a practical procedure, if 
enough constraining information is available. Ap
plications of the build-up method, including a com
bination with a version of the variable target function 
procedure,206 have also been made to small proteins 
using distance information derivable from NMR 
experiments.207'208 Bruccoleri and co-workers report 
using a procedure similar to the build-up in their 
program CONGEN to treat protein loops too long to 
be considered by a true systematic search;209 further 
description of this work is given in section III.E.l. 

Another way to use step-by-step procedures ap
plicable to analysis of relatively long polypeptide 
models is the replacement of exhaustive enumeration 
by Monte Carlo procedures. The scanning method 
of Meirovitch already mentioned in section II.A.4 is 
an example of such a procedure.178'180 A similar 
method, which, like the scanning procedure, is also 
based on early work of Rosenbluth and Rosenbluth,210 

has been used in studies of lattice proteins.211'212 

Premilat has also presented a Monte Carlo step-by-
step procedure with different treatments for short-
and long-range interactions.213 Finally, Garel and co
workers have developed a novel chain-growth Monte 
Carlo method that appears to compare favorably with 
molecular dynamics studies on the same polypeptide 
system.214"216 

2. Deformation plus Minimization Procedures 

Direct application of Monte Carlo methods to 
polypeptide systems has been limited by the strong 
coupling between variables and by the highly aniso
tropic surfaces typical of most commonly used force 
fields. These features force the use of very small 
(torsion angle or Cartesian coordinate) steps if a 
practical acceptance rate is to be achieved. In order 
to enable use of very large steps, Li and Scheraga 
introduced the Monte Carlo minimization (MCM) 
method217'218 in which a large random deformation 
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is followed by local minimization of the potential 
energy, and by application of the Metropolis test219 

for acceptance or rejection of the new conformation. 
The deformation usually consists of a variation of one 
dihedral angle chosen over the entire 0 to 2TI range; 
but two or more dihedral angles may be altered with 
decreasing probability. The procedure is then iter
ated. Thus, this method carries out an approximate 
Metropolis walk over the discrete space of local 
energy minima, rather than on the continuum rep
resenting the entire conformational space. Because 
the probability of reaching a particular energy mini
mum depends on the shape of its energy basin and 
not only on the energy value at the bottom, MCM 
does not generate a rigorous Boltzmann sample in 
the discrete space of local minima. 

Saunders independently described a method called 
stochastic search, in which large deformations in 
Cartesian coordinates are also followed by local 
minimization; this work does not make explicit 
reference to Monte Carlo or Metropolis methods.220 

The random incremental pulse search (RIPS) method 
of Ferguson and Raber221 is conceptually very similar 
to the stochastic search method of Saunders; they 
have also applied it to a number of organic molecules. 
More similar to MCM is the procedure of Chang et 
al.;222 in this method, large deformations are made 
to dihedral angles but local minimization is carried 
out in Cartesian coordinates using a fully flexible-
geometry potential function. A comparison of the 
performance of some of these procedures for calcula
tions on cycloheptadecane was conducted, and the 
deformation-plus-minimization methods seem to ex
hibit the best behavior.223 Most of the published tests 
of these three methods have been carried out on 
hydrocarbon molecules; however some applications 
to polypeptides have been reported.224 

A generalization of the original MCM method for 
calculations involving isolated peptides as well as 
peptide-protein complexes has been reported by 
Caflisch and co-workers.225,226 These authors have 
also exploited the use of variable temperatures (see 
section on simulated annealing, section II.B.3) for a 
further speed-up of their procedure. As in the work 
of Chang et al., they carry out large deformations in 
torsion angle space, but conduct the local minimiza
tion stage in full Cartesian coordinate space. 

One possible criticism of the original MCM method 
is the totally random fashion in which new deforma
tions are chosen. This has been addressed by Ripoll 
et al.227-229 who use the self-consistent electrostatic 
field (SCEF) procedure of Piela and Scheraga230 as a 
source of advice for large torsional angle deformations 
in their electrostatically driven Monte Carlo (EDMC) 
method. The choice of dihedral angle jumps is based 
on the assumption that low-energy conformations 
must also have favorable electrostatic interactions. 
Therefore, the peptide dipoles should be optimally 
oriented in the local electrostatic field created by the 
rest of the polypeptide molecule in its current con
formation. If the dipoles are not aligned, then their 
orientations are changed in a way that will decrease 
the electrostatic energy within the mean-field ap
proximation. Since this involves a local movement, 
it is computationally very fast. In EDMC, the SCEF 

diagnosis is combined with random sampling and 
thermalization, and, as in MCM, deformed structures 
are energy minimized before application of the Me
tropolis test. An alternative way to bias steps has 
been described by Abagyan and Totrov,163 who used 
distribution functions derived from analysis of pro
tein structures to sample preferentially in well-
populated areas of (p-tp and % space. 

In summary, MCM, RIPS, and related procedures 
combine the global sampling features of stochastic 
procedures, which makes them less likely to become 
trapped in local energy minima, with the excellent 
local exploration properties of numerical minimiza
tion methods, which move quickly to the bottom of 
the energy well, without wasting time in fluctuations 
inside the well. In this sense, the earlier GLOBEX 
method of Robson and co-workers,231,232 which com
bines nonlinear SIMPLEX with local minimization, 
presents some similarity to this class of methods. 

The implementation of the simplest of these meth
ods, e.g. MCM, is quite straightforward, and gener
alization for use with a variety of systems has been 
carried out. Their major limitation remains the rapid 
increase of computational resources as the size of the 
system increases. Just the time needed for each local 
optimization increases at least as the square of the 
number of variables describing the system (this 
assumes use of a nonbonded distance cutoff for large 
systems, otherwise, this increase would vary at least 
with the cube of the system size), while the number 
of steps needed for global convergence is also ex
pected to increase with system size. 

3. Simulated Annealing 

Simulated annealing techniques233"236 have been 
applied in numerous studies to optimization prob
lems. In its usual implementation, as an extension 
of the Metropolis Monte Carlo algorithm,219 the 
procedure involves Monte Carlo searches at an initial 
elevated temperature, with subsequent similar 
searches at progressively lower temperatures.236 The 
key feature of the method is the existence of a cooling 
schedule, that is, of a method to manipulate the 
values of successively lower temperatures as the 
algorithm progresses. Most often, this cooling sched
ule amounts to a gentle lowering of the temperature 
that, if carried out appropriately, assures one that 
statistically the system will eventually become trapped 
("frozen") into the conformation of lowest energy. For 
this purpose, simulated annealing is an improvement 
over a constant-temperature Metropolis Monte Carlo 
search, because it biases the acceptance criterion in 
a way that favors convergence to the global mini
mum. In its simplest versions, the method avoids 
time-consuming energy minimization steps. The 
main weakness of this method, for the purpose of 
global optimization, is that its performance depends 
strongly on the choice of the cooling schedule. The 
determination of an optimal cooling schedule is very 
problem dependent, and although useful solutions 
have been found for certain types of optimization 
problems,237 its tuning remains a matter of trial and 
error. 

The simulated annealing technique can also be 
used in the context of molecular dynamics (MD) 
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methodology. Here, the temperature enters the 
calculation through the kinetic energy. In more 
detail, the atomic velocities have to conform to a 
Maxwell—Boltzmann distribution at a given tem
perature. Several algorithms have been proposed to 
carry out the thermal coupling; perhaps one of the 
simplest and most commonly used is that of Berend-
sen et al.;238 a comparison of different methods to 
accomplish this coupling was presented recently.239 

An embryonic version of the simulated annealing 
technique in molecular simulations can be found in 
the quenched dynamics protocols of Levitt39 and of 
Brooks et al.35 In these early applications, MD runs 
were started at room temperature, but then the 
system was cooled to close to 0 K. The observation 
was then made that this protocol enabled the system 
to escape from shallow local minima and that runs 
starting from the same initial conformation eventu
ally led to lower energies than to those obtained by 
direct energy minimization. 

More recently, temperature-setting protocols have 
become more complex, and the initial temperatures 
are now in the thousands of degrees Kelvin. One of 
the most successful applications of dynamic simu
lated annealing (DSA) has been in macromolecule 
calculations using restraints derived from X-ray 
crystallography or from NMR.240"242 Most applica
tions of DSA start the calculations with an initial 
guess already close to the expected correct structure; 
hence, the role of the procedure is mostly refinement. 
However, the power of the method has been demon
strated in two sets of calculations that used NMR-
derived distance restraints, and that started from 
random structures. In the first,242 randomly gener
ated polypeptide chains could be refined by a proce
dure that combined DSA with dynamic adjustment 
of the objective (energy plus restraints) function (this 
is similar in concept to the variable-target function 
optimization method206,243). In a second244 even more 
impressive test, the starting "conformation" was a 
random arrangement of atoms, and again a DSA 
protocol succeeded in producing conformations of low 
energy that also satisfied the input restraints (this 
procedure has also served as the basis for model 
building operations useful in modeling proteins by 
homology; see section III.E.l). Because the relative 
ease with which DSA protocols can be implemented 
in packages in general use such as AMBER, 
CHARMM, DISCOVER, and others, this method has 
been used as a general "global" optimization tool in 
a large number of studies. A number of these are 
reviewed in section III.B. 

Using the Metropolis algorithm, a number of 
researchers have carried out simulated annealing 
calculations of peptide conformation.245-248 In an 
application to enkephalin, however, the annealing 
trajectory did not necessarily proceed toward the 
global minimum.249 Possible reasons for the failure 
of the method, in problems in which restraining 
information is not available in advance, have been 
discussed elsewhere.249 However, one sometimes 
sees qualitative agreement between simulated an
nealing and more sophisticated techniques, often at 
a much lower computational cost for the former.250 

Moreover, it should be noted that several SA cal

culations250-252 of [Met]enkephalin have used slightly 
different versions of the ECEPP potential and/or 
different sets of variable dihedral angles (e.g. keeping 
co's fixed250). When the conformations reported by 
these authors are reminimized using a program 
entirely compatible with that used by Nayeem et 
al.,249 we find that the correct global minimum is 
achieved in each case (for the case of fixed co's, this 
"global minimum" is the same as the lowest energy 
structure obtained by several runs of MCM using the 
same set of variables; M. V. unpublished). Recently, 
a new Monte Carlo procedure, consisting of simula
tions in the multicanonical ensemble,253 has been 
applied to the enkephalin problem using the ECEPP 
potential;254 as in the SA calculations of Okamoto et 
al.,250 the method converged to conformations that 
upon minimization led to the same global minimum 
found by MCM (keeping co's fixed in all stages of the 
algorithm); in addition, the new method enables 
estimation to be made of thermodynamic functions. 

A number of new versions of the Metropolis Monte 
Carlo procedure have been applied to biomolecular 
calculation problems. These new procedures have in 
common inclusion of techniques that enable optimi
zation of the direction and magnitude of each pro
posed step. Bouzida et al.255256 introduced the ac
ceptance-ratio method (ARM), and the dynamically 
optimized Monte Carlo (DOMC) procedure. With 
ARM, the magnitude of the maximum step size is 
adjusted depending on the acceptance rate monitored 
over a number of moves; with DOMC, it is possible 
to include directionality in the procedure according 
to the local anisotropy. The authors have applied the 
method to polypeptides, conducting moves directly in 
Cartesian coordinate space. Their new procedures 
seem to be more efficient in exploring conformational 
space than molecular dynamics. If of general ap
plicability, this is an important result since the 
influential work of Northrup and McCammon257 has 
been taken for years as convincing evidence that MC 
procedures could not be competitive with MD in 
Cartesian space simulations of complex biomolecules. 
More recently,256 Bouzida et al. have combined their 
ARM and DOMC improvements with simulated an
nealing to conduct conformational searches of the 
small protein glucagon. 

Higo et al. have proposed an extended simulated 
annealing process (ESAP) to obtain conformational 
ensembles of peptide loops in a protein.258,259 This 
procedure combines simulated annealing with the 
scaled collective variables method of Noguti and 
Q5 260 -Pj16 original method used a fast analytical 
calculation of the second derivative of the energy with 
respect to torsional variables, to deduce optimized 
normal-mode like variables along which optimized 
steps can be taken. In this manner, one can consider 
the local anisotropy of the energy surface. In their 
first applications,258a Higo et al. compute the second 
derivative numerically, but only after every 2000 
steps of the simulation. More recently ,258b they have 
incorporated an analytical calculation of the second 
derivatives. 

A similar goal is pursued by Shin and Jhon in their 
high directional Monte Carlo (HDMC) procedure.261 

In HDMC, the matrix that defines the collective 
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variables is not obtained from a second derivative 
calculation, but instead by the covariance matrix 
accumulated over a segment of the run. As in ESAP, 
this results in highly optimized anisotropic steps. The 
method, used with simulated annealing, was applied 
to an investigation of [Met]enkephalin described by 
the AMBER force field. In spite of the use of a 
different search procedure, and most importantly a 
different force field, their best conformation was 
reported to be similar to that of the global minimum 
found by Li and Scheraga using MCM.217 The 
authors estimate that the sampling efficiency in 
HDMC is at least 20 times greater than in standard 
Metropolis Monte Carlo. 

Both HDMC and DOMC appear very similar to 
each other, and in turn to the extension of simulated 
annealing to continuous variables first outlined by 
Vanderbilt and Louie.234 It is important to point out 
that some of these procedures may not be consistent 
with the detailed balance condition sufficient to 
ensure Boltzmann sampling;219 by using additional 
information, the simulation may no longer correspond 
strictly to a Markov process. Thus, in the absence 
of detailed balance, some of these methods may or 
may not lead to a Boltzmann distribution. Bouzida 
et al. have carefully tuned their procedure in an effort 
to preserve detailed balance and thus correct sam
pling.255 Clearly, if the objective of the calculation 
is to find a set of very low-energy structures, and not 
necessarily to generate a correctly equilibrated sample, 
then this issue is not important. It is also interesting 
to point out the clear analogy between the HDMC 
and DOMC methods (and the ESAP) with several of 
the algorithms for estimation of conformational en
tropy described in section II.A.4. 

Simulated annealing concepts have also been ap
plied successfully in combination with an MCM-like 
procedure by von Freyberg and Braun;262 these 
authors generated an extensive list of low-energy 
conformations of [Met]enkephalin. They showed that 
constant temperature MCM was able to find the 
global minimum consistently, confirming the original 
work of Li and Scheraga,217 but they needed to vary 
the temperature in order to find suboptimal confor
mations more efficiently. As mentioned in the In
troduction, most small linear peptides exist in an 
ensemble of conformations, which one cannot hope 
to describe by just examining the structure of the 
global minimum; thus, this work represents an 
interesting methodological improvement. Caflisch 
and co-workers226 and Abagyan and Argos56 have also 
used simulated annealing in conjunction with MCM 
procedures. In general, the simulated annealing idea 
can be, and has been, used in the context of methods 
other than simple Monte Carlo. In some cases, use 
of annealing, or in general, variable temperature, has 
led to improved protocols. We close this section by 
mentioning the work of Snow,263,264 who has devel
oped a highly optimized annealing/thermalization 
protocol in a novel scheme to compute the structures 
of proteins using homology (see also section III.E.l). 

4. Use of Statistical Information 

In this family of procedures, an attempt is made 
to select a limited number of starting conformations 

for energy minimization, by establishing a hierarchy 
of progressively more complex descriptions of the 
polypeptide structure. The method used to carry out 
this selection may be superficially similar to tradi
tional local backbone structure prediction schemes. 
Thus, they use information derived from the protein 
structural databank, either in the form of statistical 
preferences,265-267 or of rules of pattern match-
jng 268-270a Ĵ  j s important to realize, however, that 
the usual predictions, in addition to being at best 70% 
accurate,270b are not very informative, especially, 
about what they term the "coil" state. Thus, in the 
hierarchical optimization procedures reviewed in this 
section, one attempts to predict values for structur
ally informative geometrical or topological "vari
ables". These variables may be backbone dihedral 
angles, interresidue distances, or information about 
residue—residue contacts. 

In the pattern-recognition importance sampling 
minimization (PRISM) procedure of Lambert and 
Scheraga,265-267 the polypeptide chain is built up from 
probabilities of occurrences in actual regions of the 
(j)—yj map. This is divided into four regions (a, e, a*, 
and €*), and all possible three-residue segments from 
a nonredundant set of X-ray structures are collected 
and grouped according to each of the possible 43 or 
64 conformations. The pattern-recognition procedure 
uses amino acid properties271 to map peptide se
quences into a multivariate continuous property 
space. These regions are represented by multivariate 
Gaussian distributions, with parameters derived 
from the three-residue segments mentioned above. 
These data are then used to build sequence-depend
ent probabilities. 

In PRISM, the chain is built from the N-terminus, 
joining the most probable three-residue segment 
conformations together, allowing for proper overlaps. 
As the construction proceeds, only the 1000 most 
probable are retained, up until the end of the chain. 
Thus, this part of the procedure ends with 1000 
different predictions of the backbone structure of the 
protein. These predictions of conformational regions 
can be converted to actual sets of <p—ip pairs, which 
can in turn be investigated by standard energy 
minimization. The approach was applied to the 36-
residue avian pancreatic polypeptide. The structure 
of this molecule is quite simple, consisting of a 
polyproline-like helix packed against an a-helix, with 
both helices being connected by a sharp turn struc
ture. The relative success of PRISM in this problem 
can be traced back to a roughly correct prediction of 
the location of the turn, and to a mostly correct 
prediction of the a-helix. The presence of several 
proline residues in the N-terminal portion seems to 
be enough to induce a polyproline-like helical struc
ture upon energy minimization. Application of the 
full implementation of the method (local structure 
predictions plus minimization) has not been extended 
to more complex proteins. The dependence on de
tailed predictions of very local features makes it 
possible that it may not be useful in the absence of 
information about long-range interactions. 

A different procedure272 has been described by 
Head-Gordon and Stillinger in an application of their 
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"ant lion" global optimization procedure (see section 
II.B.5). Predictions of local structure are carried out 
by using neural networks, and the results are ex
pressed as angular restraint terms to be added to a 
standard empirical energy function. This has the 
effect of deforming the original energy surface defined 
by the empirical potential in a way.that dramatically 
reduces the number of local minima. Optimization 
of the smoothed function, followed by eventual mini
mization of the empirical energy alone, leads to 
structural predictions. They applied the method to 
the bee venom peptide melittin. This is a 26-residue 
polypeptide and its native conformation is an a-helix 
with a slight kink near the middle.273 As in the 
PRISM application, there is very good agreement 
between calculated and experimental272 structures, 
but the reliance on prediction of local features only 
makes it difficult to see how the approach can be 
generalized to work effectively with more complex 
protein folds. 

The weaknesses of the two representative ap
proaches described above suggests that perhaps one 
should explore ways of predicting long-range features 
of protein structure. Such an approach has been 
pursued by Cohen and collaborators since the early 
1980's in their formalization and extension274,275 of 
the "sausage-packing" method of Ptitsyn and Rash-
j n 276 They developed a series of rules that identify 
possible sites for packing of a-helices and ^-strands. 
In their first applications, they assumed exact knowl
edge of the location of regular structure elements, 
and tested their packing rules and their algorithms 
to produce low-resolution structures. More recently, 
they have applied their methods, including full-atom 
optimization of the best models, for blind predictions 
of a number of proteins. Although they have not 
achieved a perfect prediction yet, one can see steady 
progress in how close they are getting to that goal, 
when comparing their work on interleukin-2, growth 
hormone, and interleukin-4.269,277,278 For the first 
two, the predictions of the location of the a-helices 
were far from perfect, and the proposed three-
dimensional folds were largely incorrect. For inter
leukin-4, the location of the a-helices was predicted 
with almost perfect accuracy, and the differences 
between the predicted and observed folds were far 
more subtle: a change in the handedness of the 
4-helix bundle.2703 Interestingly, the initial NMR 
study could not reliably establish the handedness of 
the bundle and thus the correctness or not of the 
prediction.279 Definitive confirmation had to await 
more extensive NMR280'281 and, later, X-ray crystal
lography282,283 work. More recently, it has been 
shown how data derived from mutagenesis and 
epitope mapping experiments can be used to screen 
and evaluate three-dimensional models generated by 
the techniques of Cohen and co-workers.284 

In summary, the goal of this family of methods is 
to carry out a global exploration of conformational 
space using statistical information (or logical rules) 
derived from analysis of known protein structures; 
then refine the best choices using progressively more 
complex energy functions. It seems that, for all but 
the simplest protein folds, predictions of variables 

other than (or in addition to) backbone torsion angles 
may offer better possibilities for success. In this 
respect, one should mention the efforts of several 
groups to use neural network and other pattern 
recognition approaches to predict interresidue dis
tance ranges or contact distance matrices.285 

5. Surface Deformation 

These algorithms are based on a deformation of the 
original potential energy hypersurface in such a way 
that high-energy minima disappear, until the de
formed surface contains only a single minimum that, 
in most cases, is related to the global minimum of 
the original surface. This single minimum can then 
easily be obtained on the deformed surface by a 
standard local minimization procedure, starting from 
any point on the surface. The position of this 
minimum with respect to the global one in the 
original hypersurface may have been changed during 
deformation. Therefore, a procedure may have to be 
applied in which the global minimum is attained by 
gradually reversing the deformation. 

One way of achieving a smoothing surface defor
mation transform is by increasing the number of 
dimensions of the problem. Crippen proposed the 
energy embedding method in which the minimization 
problem is solved in (N - l)-dimensional space, 
where N is the number of atoms in the molecule, and 
thus, each atom has N-I "coordinates". In this 
space, energy functions of the form described in 
section II.A usually have only one minimum. The 
tracing back to the original three-dimensional space 
is done by progressive elimination of the N-A extra 
dimensions.286"288 Several procedures have been 
used to carry out this reduction of dimensions. In 
the original description, the force constant-weighted 
inertial tensor T of the interatomic separation vectors 
was calculated. In this procedure, T is a d-hy-d 
matrix, where d is the number of dimensions, initially 
d = N - 1; T is defined by 

N N 

TiJ = 2I I Kkl(xki-xh)(.xkj-Xlj) (20) 
k=i i=k+i 

where xu is the ith coordinate of the &th atom and 
Ku is the force constant for the interaction between 
atoms k and I. The eigenvalues and eigenvectors of 
T are then computed and the coordinates Xk ex
pressed in terms of them. The dimensionality is 
reduced by setting to zero components corresponding 
to the smallest eigenvalues (i.e., project these out). 
Local minimization in the resulting lower dimen
sional space was then carried out, and the process 
was iterated until the dimensionality of the problem 
was three. In other applications,100 energy embed
ding was formulated as a constrained optimization 
problem solved by minimization of an augmented 
Lagrangian function, which is the sum of the target 
energy U(X) and penalty function-like contributions 
of a vector that represents the unwanted coordinates. 
Crippen and co-workers have also introduced rota
tional embedding and dimensional oscillation proce
dures as variations on the general energy embedding 
theme.289-291 
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Figure 1. Illustration of the basic principle of the diffusion 
equation method (DEM). The original double-minimum 
potential energy curve fix) (solid line) is transformed, 
according to eq 21 into a curve /11Xx) with only a single 
minimum (dashed line). The values of the transformed 
function at the inflection points do not change. The 
particular function used in the figure is fix) = x* + ax3 + 
bx2, with a = 2.0 and b =0.9. The dashed curve corresponds 
to /3 = 0.02. (Reprinted from ref 296. Copyright 1989 
American Chemical Society.) 

A similar procedure was proposed by Purisima and 
Scheraga, using Cailey-Menger determinants as 
dimensionality-enforcing penalty functions.292 An 
interesting combination of dimensional relaxation 
and variable-temperature molecular dynamics was 
described recently in the context of refinement of 
NMR-derived structures.293 These authors conduct 
restrained MD in four dimensions (4D-MD) and, after 
a number of simulation steps, conduct a gradual 
projection to three-dimensional space using a penalty 
function and a quenched MD protocol. The use of 
4D refinement of NMR structures had been proposed 
earlier, but only static minimization calculations had 
been carried out.294'295 

Another example of surface smoothing is the dif
fusion equation method, or DEM,296"298 which is 
illustrated in Figure 1 by a simple one-dimensional 
function with two minima. The original function, ffx), 
can be deformed, in the first iteration, to f1](x) by 
adding its second derivative, f"(x), which is zero at 
the inflection points, viz. 

/11Oc) = fix) + pf "ix) = (l + ^ W ) (21) 

where /3 is a small positive constant. Since the 
second derivative is positive at minima and negative 
at maxima, the original curve is smoothed to some 
extent. Repeated applications of this procedure lead 
to the following result in the Nth iteration: 

/™(x) = (l+£|i)%*) (22) 

where t IN has been written for /J, with the parameter 
t being positive. Destabilization of the surface is 
most effective when N —• <». Taking this limit, we 
may write 

iV-° 

2 \N 

F{x,t) = liml 1 + 1 fix) = expl t 
N& dx' 

'.X) (23) 

" deformot ion 

Figure 2. Illustration of the stages of deformation of the 
function fix) of Figure 1 according to eq 22, followed by the 
reversing procedure. The deformation at to leads to the 
curve on the top with a unique minimum that is attainable 
from any point in space by a simple minimization. Then, 
the reversing procedure (shown by the arrows directed 
downward) is applied by considering a sequence of the 
deformed curves at the successive values of t indicated. 
Each step of the procedure is followed by a minimization 
symbolized by a ball moving downhill from the minimum 
position of the upper curve and always reaching the 
position of the minimum on the lower curve. In the final 
step, the global minimum is found. (Reprinted from ref 296. 
Copyright 1989 American Chemical Society.) 

It can be shown that, equivalently, F(x,t) is a solution 
of the diffusion equation 

Skc2 

§F 
dt 

(24) 

where the parameter t takes on the meaning of 
"time", with the initial condition being F(x,0) —fix). 

In higher dimensions, 32/6te2 is replaced by the 
Laplacian, A = I™=1d

2ldxi2, so that the diffusion 
equation becomes 

AF = 
dF 
dt 

(25) 

The successive deformations of the one-dimensional 
function of Figure 1 from t = 0 to t0 = 0.25, and the 
reversal from to = 0.25 to t — 0, are illustrated in 
Figure 2. It can be seen how the global minimum of 
the original function is attained. 

In the diffusion equation method, the original 
potential surface is the analog of a varying concen
tration that becomes uniform as t -* <*>. Thus, as t —» 
oo, all minima would disappear, and the surface 
would become uniformly flat. However, if the defor
mation procedure is stopped at an earlier time, to, 
then only one minimum (a descendant of the global 
minimum) remains. 

If there are minima with different widths, the 
method takes the entropic contribution (see section 
II.A.4) into account correctly in the classical ap
proximation. The minimum that is attained after 
reversal of the deformation is the one with largest 
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Figure 3. Original (<£,!/>) map of terminally blocked ala
nine, calculated with ECEPP/2, used as the starting point 
of the deformation procedure it = O). Point C is the position 
of the global minimum. (Reprinted from ref 298. Copyright 
1992 American Chemical Society.) 

statistical weight, not necessarily the deepest mini
mum, in contrast to most other methods of minimiza
tion.297'298 Therefore, this method locates the mini
mum that satisfies the thermodynamic hypothesis in 
the limit of a correct potential for a polypeptide or 
protein in solution. 

The method has been tested on various systems. 
In the case of a cluster of 55 Lennard-Jones atoms, 
with 159 degrees of freedom, it has been estimated 
that the total number of local minima is %1045. 
Using the DEM, the global minimum was attained 
in «400 s on one processor of an IBM 3090 com
puter.297 In an application to terminally blocked 
alanine, by using the ECEPP/2 potential function, the 
original (0,ip) potential surface (Figure 3) was de
formed until only one minimum remained298 (Figure 
4). Figure 5 shows the trajectory of the global 
minimum in the course of the reversal procedure, 
leading to the global minimum, located in conforma
tional region C (according to the letter code of 
Zimmerman et al.196) of the original surface. Ap
plication to [Met]enkephalin298 led to practically the 
same global-minimum backbone structure as ob
tained by the MCM method (Figure 6 and section 
III.B). The DEM found the global minimum for 
terminally blocked alanine in <1 min and for the 
pentapeptide in »sl0 min, using one processor of an 
IBM 3090 supercomputer. Since the DEM scales as 
n3, where n is the number of residues, it should take 
(10 min) x 103 = 104 min or « 7 days, to scale up by 
a factor of 10, i.e. to go from a pentapeptide to a 50-
residue protein, using one processor of the IBM 3090 
computer. The method has also been applied299 to 
the folding of the 36-residue C-terminal domain of 
cellobiohydrolase I from Trichoderma reesei.300 In a 
preliminary run on a Fujitsu (FACOM VP 2600) 
supercomputer, starting from a partially deformed 
structure that did not resemble the native one, the 
overall fold of the native protein was obtained. The 
good performance of this method makes the develop-
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<Mdeg) 

Figure 4. Deformed potential surface for terminally 
blocked alanine at to = 10 A2 where only one minimum 
remains. Point M is the position of the unique minimum. 
(Reprinted from ref 298. Copyright 1992 American Chemi
cal Society.) 

180 

Figure 5. Trajectory of the local minima in the course of 
the reversal procedure, leading from the unique minimum 
M at t0 = 10 A2 (Figure 4) to point C, which is identical to 
the global minimum C of the original surface at t = 0. 
(Reprinted from ref 298. Copyright 1992 American Chemi
cal Society.) 

ment of more accurate potentials a more pressing 
issue. 

The ant lion method is another procedure for 
deforming the energy surface; here, alteration of the 
components of the force field has been suggested.301 

In the initial description of the procedure, it appeared 
that it required prior detailed knowledge of the 
energy surface.302 In a later application, however, 
this apparent limitation was addressed and a test on 
melittin was presented.272 (See also section II.B.4.) 
In the ant lion strategy, the energy surface is 
deformed by addition of penalty functions that favor 
a preselected minimum: 

V(X) = U(X) + J> /1 COS(0 - 4>0)] + 

A / 1 - cos(^ - tp0)] (26) 
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Figure 6. Stereoview of the global minimum-energy structure of [Metjenkephalin in the absence of water. (Reprinted 
from ref 217. Copyright 1987 Z. Li and H. Scheraga.) 

In addition to the backbone dihedral angle re
straints, the procedure also utilizes penalty functions 
that favor hydrogen-bonding patterns characteristic 
of helices, turns, and sheets. To resolve the apparent 
circularity in the choice of preselected minima, the 
ant lion method is adapted to use neural networks 
as a guide for designing appropriate penalty function 
parameters from amino acid sequence information 
alone.272 

6. Probability Methods 
In this type of procedure, one constructs and then 

examines distribution functions that describe the 
possible values that important structural variables 
can attain. Then, an examination of the global 
energy surface is carried out in order to obtain 
updated distribution functions. The simplest of these 
methods is the classical version of the self-consistent 
mean-field method. Here one computes mean field 
potentials V(<pi) by sampling or enumerating over all 
variables (pj other than (pi. This process is repeated 
for a number of possible values of (pi and for all the 
other variables. Probability density functions can 
then be derived by way of the Boltzmann law, and 
the self-consistent protocol for the &th iteration is 
established as 

e
w (^) = expl-

^k\<Pj] 

RT 

^+1X(P1) = {V{(pM))g[k] 

(27) 

where (...)pi« refers to averaging or sampling using 
the probability information obtained in the previous 
iteration. Finkelstein and Reva303,304 presented a 
version of this approach tha t includes nearest-
neighbor correlations in a manner similar to he l ix -
coil transition theories.305 Thus, their probability 
functions for the variable i are contingent on the state 
of variable i — 1. They applied their approach to 
study the ways in which an amino acid sequence 
could be mounted on a preexisting three-dimensional 
template.303-304 

Rabow and Scheraga recently outlined a lattice 
neural network minimization procedure306 that is 
virtually identical to the classical self-consistent 

scheme outlined above. Their key equations (eqs 11 
and 12 in the original reference) are 

-V11IT 

Vxi = 

CZw = 
dE 

3Vw 

-VJT 
(28) 

Here, E is the energy of the system, and (xi) refers 
to the lattice position x for atom i. If one expresses 
the derivative for a pairwise potential with fixi,yj) 
representing the interaction between two atoms i and 

j , at lattice positionsx andy, respectively, one would 
obtain 

dE 

9 ^ " 
= Z^/Wtf) (29) 

yj 

Reinterpreting V1* as the probability Qi(x) of atom i 
being at position x, the identification of "LyjVyj f{xi,yj) 
— YyjQj(y)f{xiyj) = (Vi(x))e with a mean-field potential 
becomes transparent (an explicit connection between 
mean-field optimization and neural networks has 
been given307). 

A quantum mechanical version of the self-consis
tent mean field optimization procedure was presented 
by Somorjai.308'309 He outlined a possible way in 
which the method could be used to calculate the 
three-dimensional structures of proteins, but pre
sented actual numerical results only for one-dimen
sional tests. Shortly thereafter, Olzewski et al. 
described their self-consistent mean-torsional field, 
SCMTF, method.310-312 Like Somorjai's procedure, 
this method is based on the idea that the ground-
state wave function ip of a system of nuclei in a 
molecule spreads over the entire potential energy 
surface, irrespective of the number of potential wells. 
Hence, the maximum of ip2 should lie close to the 
global minimum of the potential energy. In contrast 
to Somorjai's outline, however, their implementation 
of the method uses the dihedral angles, 9t, of the 
polypeptide as the independent variables of the 
problem. This modification may result in a poten
tially better scaling with problem size than the 
Cartesian coordinate-based method of Somorjai. 
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By application of the variational principle, one 
obtains a set of N coupled orae-dimensional Schrod-
inger equations, one for each <t>i(Qd, where 1V(Qi,...,QN) 
= Ylf=1(j)i(di), and N is the number of dihedral angles. 

H1(Pi = efa (30) 

with 

H1 = T1 + V^O1) (31) 

Ti is the kinetic energy operator, and VeS(Qd is the 
potential energy operator. The TV-coupled one-
dimensional Schrodinger equations are solved itera-
tively in iV-dimensional dihedral angle space. In 
analogy to the classical procedure of eqs 27, each 
equation describes the variation of a single dihedral 
angle in the averaged field of the others. The 
Hamiltonian is 

^ = ^T ̂ + ^ (32) 

where It is a moment of inertia, and the effective 
potential VeS(8i) depends on the mean field created 
by averaging over the other dihedral angles, Gi(I ^ 
i), according to the probability distribution p° = 
|</>°|2. In order to calculate Veff(<9;), a Monte Carlo 
procedure310 is used, i.e. 

vjidi)=— x^r,...,^...,^*) (33) 
Af m 

where the summation extends over Mc locally mini
mized trial points in the (N - l)-dimensional space 
of all dihedral angles Q\ except Qi. First, each point 
6m in the space is selected randomly according to 
some preassumed one-dimensional distribution @°. 
Then, whenever a Qm is chosen, the potential energy 
V(O) is minimized with respect to all Qs. The mini
mization gives the new Qm*, which is then used in 
the definition of the mean field. Solution of the set 
of one-dimensional Schrodinger equations gives a 
new set of g>°. The procedure is repeated iteratively 
until self-consistency of the distributions is achieved. 

Application of this method to [Met]enkephalin 
(with side-chain torsion angles fixed to values cor
responding to the global minimum determined by 
other procedures) located the global minimum in a 
time comparable to that required by the DEM. The 
SCMTF method scales like the DEM. Hence, both 
of these procedures, in principle, should be able to 
treat implicit or no-solvent models of polypeptides 
containing about 50 residues in «7 days on an IBM 
3090 computer or « 2 - 3 days on the faster IBM 9000 
computer. The SCMTF method has also been applied 
to homopolypeptides311 and to melittin.312 

Given the limited number of applications to date, 
it is difficult to compare classical versus quantum 
mechanical versions; nearest-neighbor versus no-
coupling, or Cartesian coordinate versus torsion 
angles as independent variables in the type of 
methods described in this section. The use of Boltz-
mann weighting in some of these procedures also 

opens the possibility of introducing some level of 
annealing or thermalization,306-310 again, this has not 
been explored systematically to date. 

A number of other interesting approaches, which 
are similar to the ones in this section, have been 
outlined but not applied yet to polypeptide systems. 
Straub and co-workers have presented two alterna
tive ways of establishing the self-consistency equa
tions for iterative calculation of the probability 
density functions. One approach313 is based on an 
approximate solution of the time-dependent Schro
dinger equation, which has the form 

J^P(X,T) = -Hrp(X,r) (34) 

where r plays the role of imaginary time. The formal 
solution of this equation is 

W(X,r) = exv(-Ht)W(X,0) (35) 

and the authors note the similarity with the equi
librium Boltzmann distribution, exp(-H/RT), estab
lishing the analogy between imaginary time T and 
inverse temperature T. Their approximate solution 
leads to a self-consistent procedure using a product 
of single-particle wave functions and requiring evalu
ation of a mean-field potential. Interestingly, their 
implementation in terms of Gaussian packets also 
presents a strong similarity to the diffusion equation 
method described in the previous section. These 
authors tested their algorithm on a series of Lennard-
Jones iV-mer clusters, with N ranging from 2 to 19, 
and obtained results that appear as good as those of 
the DEM on the same systems. 

The second approach developed in Straub's group 
uses approximate solutions of the Liouville equation 
with Gaussian phase packet (GPP) dynamics.314 

They also tested this procedure on Lennard-Jones 
clusters, and pointed out the formal similarities of 
this method with DEM, SCMTF, and their own 
procedure based on the time-dependent Schrodinger 
equation. 

A procedure that appears to combine probability 
concepts with smoothing of the potential energy 
surface has been described recently by Shallo-
w a v 315,316 The procedure has been outlined in detail 
but no numerical applications to polypeptide models 
have been reported yet. 

The locally enhanced sampling (LES) approach of 
Elber and co-workers32-317'318 derived from the time-
dependent Hartree approximation319 also presents 
some similarities with the methods described in this 
section. In this protocol, a bundle of classical tra
jectories move on the average force field generated 
by each other. In the original applications,319,320 

multiple copies of a ligand interacting with a protein 
are generated. The interactions between different 
copies are turned off, while the protein interacts with 
the average field of all the ligands. The whole system 
is simulated by a largely standard molecular dynam
ics or energy minimization protocol. Using the 
multiple trajectories, it is thus possible to obtain 
information that is almost equivalent to that obtain
able in many independent simulations, while using 
computer time comparable to that of one individual 
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simulation. It has been shown that the procedure is 
not limited to ligand—protein systems, but it can be 
generalized to parts of proteins such as side chains317 

or even loops.321 Another extension involves using 
the mean-field methodology with chemically different 
"copies", which may be two or more types of different 
side-chain residue types in an attempt to exploit 
multiple sequence information in homology model
ing.321 

It should become apparent by now that there is not 
always a great difference between some of the 
methods in this section and those in the previous one 
dealing with deformation of the energy surface. The 
smoothing properties of the mean-field approaches 
are well known. In many of these methods one has 
all but abandoned the idea of a single discrete 
conformation "traveling" over the energy surface (cf. 
Monte Carlo and related procedures), and thinks 
instead of a probability density carrying out this 
"bundle" trajectory (in surface deformation proce
dures one can recover the idea of a sharpening 
probability density by using the Boltzmann law, for 
example). 

7. Genetic Algorithms 

Genetic algorithms represent an increasingly popu
lar family of methods that also abandon the idea of 
a single conformation "trajectory" in exchange for 
evolution of a population, and depend on an analogy 
between biological evolution and optimization prob
lems.322 These procedures have been applied in a 
number of peptide and protein model calculations, 
including lattice representations,323-325 simplified 
continuum proteins,96,326""328 placement of side chains 
on a fixed backbone,329 and full-atom models of 
oligopeptides330 or proteins;331 a review of applications 
and methodology has appeared recently.332 

The main idea of genetic algorithms (GA) is to 
generate a population of individuals (e.g., conforma
tions) to which one can assign a fitness score (a 
decreasing function of the energy) and some kind of 
string (most often binary) representation. This popu
lation then "evolves" by a series of elementary 
biological-like operations. Operations found in most 
GA applications are mutation, recombination by 
cross-over, and selection. Mutation and selection 
have clear counterparts in, for example, Monte Carlo 
methods: a mutation is analogous to a deformation 
in one or a set of coordinate variables; while selection 
is related to the idea of accepting or rejecting a move. 
Recombination by cross-over has no obvious coun
terpart in "classical" optimization procedures, and 
this operator generates new conformations by mixing 
parts of two old ones. In most polypeptide applica
tions, these variables are related to torsion angles 
or some other residue-based local variables; thus, 
Unger and Moult see this aspect of GAs as imple
menting an implicit build-up procedure,324 where 
locally dominant interactions create initiation struc
tures333 that are later combined with others far along 
the chain to create globally better solutions. Proce
dures based on GAs compare favorably with other 
methods for conformational analysis of small mol
ecules.334 

C. Simulation 

Numerical computer simulation methods are among 
the most powerful theoretical tools for the analysis 
of the dynamical behavior of chemical systems. They 
have been used extensively in recent years for the 
study of dynamical properties of water and aqueous 
solutions, polypeptides, and proteins, including the 
interactions of proteins with water. Detailed discus
sions of various aspects of simulations are reviewed 
elsewhere; viz. conformational dynamics and ther
modynamics by Brooks and Case,75 and free energy 
calculations by Kollman.72 For further detailed dis
cussions of the methodology, the reader is referred 
to several books25,335-337 and reviews.3,338 

The computation of conformational energies un
derlies the use of most of the simulation procedures 
in the study of molecular structure and dynamics. 
Thus, the discussion, section ILA, of force fields and 
of interactions with the solvent applies to these 
studies. 

A recent exciting development is simulation of 
unfolding of globular proteins in explicit solvent 
baths. At present some of these studies have re
quired somewhat unrealistic settings, such as tem
peratures above 200 0C, to accelerate conformational 
changes. Nevertheless, the resulting partially un
folded states seem to have properties compatible with 
what is expected experimentally.40,339"343 A novel 
method to study unfolding has been presented re
cently by Hao et al.344 This procedure uses a back
ward Euler scheme (see below) to integrate the 
equations of motion, and incorporates a shape- and 
size-enforcing term to drive the transition. 

A major problem in the application of molecular 
dynamics simulations to many conformational changes 
in polypeptides and proteins is the time scale. Cur
rent numerical methods for integrating the equations 
of motion proceed in such small time steps that the 
limitation of computer time precludes realistic simu
lations of significant conformational changes. The 
required size of the time step is a consequence of the 
high-frequency bond stretching and bending modes; 
thus, a possible method to increase the step size 
would be to freeze those modes. Fixing of bond 
lengths has been successfully achieved by use of the 
SHAKE algorithm, but this increases the time step 
only by a factor of 2 or so.345,346 The same algorithm 
is inefficient in simulations with fixed-bond angles.68 

One method that may result in faster simulations 
is the use of multiple time steps. Components of the 
total energy expected to vary rapidly are recalculated 
at every time step. Other, slowly varying, terms are 
assumed to remain constant for a larger number of 
steps, and thus recalculated with an effectively larger 
step size. A way of dividing these two types of terms 
could be to consider bond length and bond angle 
vibrations, in addition to very short-ranged non-
bonded interactions within a very short cutoff, as 
rapidly varying, and thus computed every one or two 
femtoseconds. Interactions due to nonbonded terms 
operating between the very short cutoff, around 4—5 
A, and the more realistic cutoff value, approaching 
10 A, are computed less often (and assumed constant 
in between). For large systems, the second type of 
interactions may account for a much larger portion 
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of the computational effort. Thus, from the point of 
view of computational efficiency, the calculations 
proceed with "effective" time steps that are 5-10 
times longer than usual.347'348 It should be noted, 
however, that the earliest algorithms of this type 
were not rigorously time-reversible and showed poor 
energy conservation; thus, the resulting trajectories 
were not very accurate. The most recent formula
tions have much better properties and represent 
rigorous, but more efficient, alternatives to standard 
MD treatments.348-350 

Several groups have attempted to generalize and 
implement MD directly in torsional space, but the 
resulting methods do not seem to have widespread 
use yet.176-351"354 

Schlick and co-workers derived an alternative 
approach that combines an implicit backward-Euler 
scheme to solve the differential equations of motion, 
with a method based on Langevin dynamics for 
achieving thermal equilibrium. The method enables 
the choice of a critical cutoff frequency, <oc, such that 
vibrational modes with frequencies above that value 
become frozen.355-357 More recently, Zhang and 
Schlick358 have combined normal mode analysis with 
the backward-Euler implicit Langevin method, in an 
effort to produce realistic trajectories, while still 
allowing for the use of larger time steps. The idea 
of the new method is to treat the high-frequency 
modes analytically using normal mode analysis, 
instead of just freezing those modes as done in earlier 
applications of this methodology. They applied their 
procedure in a simulation of liquid butane and 
reported achieving stable simulations with time steps 
as large as 50 fs. As indicated earlier, Hao et al.344 

have also used the backward-Euler method in a 
simulation of unfolding of BPTI and achieved a 
significant degree of unfolding in a relatively short 
time. 

Jain et al.359 have described a recursive procedure 
to carry out MD in terms of internal variables; e.g. 
torsion angles. They solve the equations of motion 
using a spatial operator formalism originally devel
oped for analysis and simulation of multibody sys
tems as encountered in robotics. This work is mostly 
an outline and no actual numerical data on polypep
tide or other molecular system is presented. Thus, 
the actual increase in the time step achievable for 
protein simulations using this method is presently 
unknown. 

A very interesting approach to enforce bond length 
and bond angle restraints in MD has been introduced 
by Gr0nbech-Jensen and Doniach.360 They extend an 
earlier Langevin dynamics procedure used for semi-
microscopic simulation,361 and apply it in simulations 
of an OPLS42 rigid-valence model of polyalanine. 
Using this procedure, time steps as large as 1 ps (i.e. 
a 1000-fold higher than in conventional MD) seem 
possible. 

It is not clear at the present time how general and 
useful any of these new approaches will eventually 
become. In particular, it is not known if the resulting 
dynamics trajectories generated by some of these 
methods may become too distorted when compared 
with those produced by more conventional methods.68 

Nevertheless, they may still remain useful as tools 
for efficient conformational sampling. 

A number of variants of MD have also been 
implemented in ways that are expected to enhance 
the rate at which conformational space is searched 
and barriers are crossed. The most common proce
dure involves non-physical settings of the tempera
ture of the system (described in section II-B-3). 
Other innovations include potential energy annealing 
for conformational search (or PEACS),362 atomic mass 
weighting,363 and rush dynamics;364 in addition to the 
previously described 4D-MD293 and LES proce
dures317,319 (see section ILB). 

Monte Carlo simulation forms the basis of several 
procedures used to overcome the multiple-minima 
problem, as described in section ILB. In a related 
approach, the use of a statistical mechanical proce
dure with an adaptive importance sampling Monte 
Carlo algorithm (SMAPPS) has been developed and 
tested on [Met]enkephalin.365'366 Other simulation 
work on peptides using MC includes the calculations 
of Hagler and co-workers on a number of simple 
model peptides,367 and the very long computations of 
Rapaport and Scheraga on short poly(Ala) and poly-
(GIy) peptides.368 

///. Applications 

The foregoing methods have been applied to a 
variety of model structures, small linear and cyclic 
oligopeptides (as individual molecules and in crys
tals), fibrous proteins, and globular proteins. Other 
applications, not reviewed here, include docking (e.g. 
enzyme—substrate interactions), refinement of X-ray 
and NMR structures, and the influences of site-
specific mutations on protein structure. 

A. Model Structures 

The main commonly occurring structural features 
of proteins are the a-helix, /3-sheet, and /3-turn. 
Interatomic interactions dictate these features, the 
packing of these structures, and the transitions 
between these regular structures and the disordered 
form, the statistical coil. Conformational energy 
calculations with interatomic potentials should be 
able, in principle, to account for the observed struc
tures and stabilities. As discussed earlier, however, 
a number of approximations are usually made to 
make the calculations feasible, most importantly 
incomplete sampling and neglect, or at best ap
proximation, of solvation effects. 

1. Regular Structures 

a. Handedness of a-Helices. An early applica
tion of this methodology was to the computation of 
the relative stabilities of the right- and left-handed 
a-helical forms of several homopolymers of amino 
acids.369,370 Calculations that did not include solvent 
effects were capable of estimating qualitatively cor
rect trends in a number of cases. Moreover, the 
origin of the preference for right or left handedness 
could be attributed to specific interatomic interac
tions. As an illustration, in the series of poly(o-, m-, 
and jo-chlorobenzyl aspartate)s, the ortho, meta and 
unsubstituted polymers adopt left-handed a-helical 



2204 Chemical Reviews, 1994, Vol. 94, No. 8 

Left -handed 

Vasquez et al. 

Right -handed 

Figure 7. Orientation of the side chains of the left- and right-handed a-helices of poly(m-chlorobenzyl L-aspartate). The 
solid arrows represent the direction of the C-Cl, ester, and amide dipoles, respectively. (Reprinted from ref 29. Copyright 
1991 Ellis Horwood.) 

forms, whereas the para polymer adopts a right-
handed a-helical form. In these polymers, the side 
chain takes on a transverse or longitudinal orienta
tion with respect to the backbone, bringing the 
chlorine atom close enough to the backbone to influ
ence its helical twist. Figure 7 illustrates the lowest 
energy conformations of the meta polymer, showing 
a favorable, attractive interaction between the C-Cl 
dipole and the dipole of the closest peptide group in 
the left-handed form; the corresponding interaction 
in the right-handed form is repulsive. Thus, this 
dipole—dipole interaction plays a dominant role in 
leading to the preference for left handedness. These 
preferences have been verified experimentally for all 
three chloro-substituted poly(benzyl aspartates).371 

b. 3io to a-Helix Transit ion. If the a-hydrogen 
is substituted as, for example, in a-aminoisobutyric 
acid (Aib), then the conformational energy (<f>,tp) map 
is very restricted, and the preferred form of Aib 
peptides is computed to be the 3io- rather than the 
a-helical form.372 This prediction has been verified 
by NMR and infrared spectroscopic measurements 
on solutions of oligomers of Aib.373 The stability of 
the 3io-helix for short poly(Aib-L-Ala) polypeptides 
and the increased stabilization of the a-helical form 
with a lengthening of the chain has been demon
strated by X-ray analysis of peptide crystals.374 

The problem of the 3io to a-helix equilibrium has 
been revisited recently by Tirado-Rives et al.375 and 
by Smythe et al.,376 who used explicit solvent free 
energy simulations to estimate the relative stability 
of the two helical forms for several model peptides. 
These calculations were partially motivated by the 
surprising findings by Millhauser and co-work
ers377'378 on a series of alanine-based peptides long 
thought to be a-helical in aqueous solution.379 Pres
ently, there appears to be a discrepancy between the 
experimental results, based on electron spin reso
nance (ESR) of doubly spin labeled peptides, which 
favor the 3io helices for short (16-amino acid) pep
tides, and the MD and MC results of Tirado-Rives et 
al., which favor the a-helix for a blocked form of 
undecaalanine. The origins of this discrepancy are 
not clear, although the systems studied by each group 
are not exactly identical, and the equilibrium be
tween the two forms may be due to rather subtle 
reasons as a-helical character is indeed observed by 

ESR techniques when the peptide length increases 
to 21.3 7 8 The calculations by Smythe et al. supple
ment their earlier results,380 by including simulations 
in mixed solvents. Their results also seem to ques
tion the interpretation377 of the ESR experiments. 
The dependence on chain length may be related to 
the observation of end effects wherein the a-helix 
changes its form at the termini.381 

c. Twist of ^-Sheets. Chothia382 observed that 
the /3-sheets in globular proteins have a right-handed 
twist. Salemme and co-workers383'384 accounted for 
the right-handed twist from studies of models of 
/3-sheets; they attributed the twist to a partially 
tetrahedral deformation of bonds about the peptide 
nitrogen atoms that was adopted to diminish the 
extent of distortion of hydrogen bonds in the twisted 
sheet. Computations by Chou et al.385-387 on model 
/3-sheets, e.g. the parallel and antiparallel structures 
of poly(L-valine) sheets,386 illustrated in Figure 8, 
suggest an alternative explanation, in terms of 
interatomic interactions, for the observed right-
handed twist. The conformations of the chains in 
/3-sheets are found in the upper left-hand corner of 
the conventional (<p,ip) map. In general, side cha in -
backbone interactions within each strand result in a 
preference for a right-handed twist for L-amino acids, 
although there are exceptions. In addition, inter-
strand side chain-side chain interactions also make 
significant contributions. Thus, intrastrand interac
tions in an isolated extended poly(L-Ile) strand en
ergetically favor the left-handed twist, but inter-
strand interactions result in the stabilization of a 
poly(L-Ile) /3-sheet with a right-handed twist. PoIy-
(L-Ser)388 is exceptional, in that it is computed to favor 
a left-handed /3-sheet. This prediction is consistent 
with the observed behavior of Ser residues in pro
teins: even though Ser occurs relatively infrequently 
in /3-sheets, it usually imparts a local deformation to 
the polypeptide chain that corresponds to reduced or 
left-handed local twisting. These calculations did not 
include solvation effects, and in most cases used 
idealized sequences; nevertheless, good qualitative 
correspondence with experimental findings was ob
served. 

The computed energies have been used to predict 
the relative stabilities of parallel and antiparallel 
/3-sheets of poly(amino acid)s.29'388 The antiparallel 
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B 

Figure 8. Stereodrawings of the minimum-energy ^-sheets with five CH3CO-(L-VaI)6-NHCH3 chains: (A) antiparallel 
structure and (B) parallel structure. (Reprinted from ref 386. Copyright 1982 K.-C. Chou and H. Scheraga.) 

form was predicted to be favored for sheets formed 
by residues with small unbranched (or y-branched) 
side chains (GIy, Ala, Leu), while the parallel form 
is favored for residues such as VaI, He, Lys, Ser, Thr, 
Phe, Tyr. All of these predictions agree with experi
mental observations on oligopeptides, wherever data 
are available.388 

d. Reverse Turns. Another commonly observed 
local conformational state in proteins cannot be 
described in terms of a single unique region of the 
(<j>,ip) map. This is the bend or chain reversal, also 
called a reverse or /3-turn, formed by two successive 
residues. The two residues usually are in two dif
ferent conformational states, or regions of the (<p,ip) 
map. Moreover, the dihedral angles in bends can 
take on a variety of values. Many bends can be 
classified into 11 types, according to the values of the 
dihedral angles of the two residues.389,390 A revised 
nomenclature, based on analysis of the growing 
protein structural data base, was proposed re
cently.391 Bends usually are defined in terms of the 
geometry of the backbone chain.390'392'393 The most 
common definition requires that the distance R 
between the Ca atoms of residues i and i + 3 (for a 
bend involving residues i + 1 and i + 2) be less than 
a certain distance Rb. This limiting distance was 
taken as i?b = 7 A in a number of studies. It was 
shown by Zimmerman et al.394 tha t bends are dis
tinguishable in a natural way from other nonregular 
structures in terms of their distances R and their 
average relative stabilities. These authors found that 
the probability distribution function, P(R), for 20 
globular proteins has two distinct peaks separated 
by a minimum at R ~ 7 A, indicating the existence 
of a natural division between bend and nonbend 
structures in terms of the values of R (Figure 9). 
Potential energy computations on a variety of dipep-
tides showed that the relative stabilities of bend 
conformations can be correlated with intraresidue 
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Figure 9. (A) P(R) vs R for dipeptide sequences (excluding 
those in which both residues are in an a-helix or in an 
extended structure) in globular proteins; (B) V(R) vs R for 
AT-acetyl-AT'-methylalanylalanineamide, from a 30° map 
over all conformational space, where V(R) is the volume of 
conformational space which has a value of R in the interval 
between R and R + dff; (C) a(R) vs R obtained by dividing 
curve A by curve B at each point; i.e., a(R) is a mean 
probability density distribution function. (Reprinted from 
ref 394. Copyright 1977 American Chemical Society.) 

interactions.395 These calculations did not include 
solvation effects. 

More recently, Brooks and co-workers have used 
free energy calculations with explicit solvent to 
estimate bend stability.396 Because of the computa
tionally intensive nature of this methodology, they 
did not explore sequence effects as extensively as in 
the earlier work. Nevertheless, they concluded that 
bend conformations are intrinsically unstable in 
water.396 They have also carried out a nanosecond-
scale simulation397 of a pentapeptide known398 to form 
a high population of bend structures in aqueous 
solution. There is qualitative agreement between 
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Figure 10. Stereoscopic pictures of an a[CH3CO-(L-Leu)io-NHCH3] (shaded atoms and bonds) and an 01[CH3CO-(L-
Ala)ioNHCH3] (open atoms and bonds) a-helix in the lowest energy packing state. The two helices are nearly antiparallel. 
The helix axes are indicated by arrows, with the head of the arrow pointing in the direction of the C-terminus of each 
helix. Hydrogen atoms are omitted, except for the amide hydrogens. The arrows marked a - d indicate regions in which the 
surfaces of the two a-hel ices are complementary. (Reprinted from ref 401. Copyright 1984 American Chemical Society.) 

simulation and experiment, but the authors point out 
the difficulty of carrying out a thorough comparison 
between simulations and experiment. 

These two sets of studies illustrate the conflict 
alluded to earlier between complex explicit solvent 
descriptions, where sampling issues are always dif
ficult to address, and simplified models without 
explicit solvent, where thorough sampling of confor
mational space may be achieved, but some questions 
remain about the accuracy of the total potential. In 
either case, it is not always easy to find the most 
relevant experimental system for validation. As 
pointed out above (and earlier by Tobias et al.396), 
comparisons of calculations of isolated small peptides 
with local trends in native protein structures can 
have only a qualitative character. Further discussion 
of some of these calculations has been given in a 
recent review by Brooks and Case.75 

2. Packing of Regular Structures 

The computational methodology has also accounted 
for various types of packing of a-helices and 
/3-sheets: a/a packing, coiled-coil packing of helices, 
a//? packing, /?//? packing, /fa/? crossover packing, 
^-barrels, and so on. Most of the calculations con
ducted with the ECEPP potentials have been re
viewed recently,387 and only a selection of these are 
described briefly here. 

a. a/a Packing. Two a-helices can pack ef
ficiently against each other in only a limited number 
of ways, i.e. with a small number of relative orienta
tions of the helix axes. Some of this restriction on 
the packing arrangements arises from the geo
metrical shape of the surfaces of the helices.387,399 In 
general, the side chains of one helix intercalate into 
the spaces between the side chains of the other helix. 
In addition to this geometrical complementarity, 
however, interaction energies are also important in 
helix/helix packing. Energy minimization computa
tions, without inclusion of solvation effects, on the 
packing of two poly(L-Ala) a-helices and of a poly(L-
AIa) helix with a poly(L-Leu) helix have shown that 
only about 10 low-energy packing arrangements can 

occur in each of these cases.400,401 The helices are 
nearly antiparallel in the energetically most favor
able packing arrangements. The lowest energy struc
ture, with an orientation angle of about —154° 
between the helix axes (FigurelO), is the most 
frequently observed a/a packing arrangement in 
globular proteins.387,399 Apparently, the basic pat
terns of packing are established by the overall 
geometrical and energetic features of the interacting 
a-helices, even though sequence-specific side chain-
side chain interactions may lead to some alteration 
of the preferences in actual packings found in specific 
proteins.402 

The packing orientation and the interhelix energy 
are influenced by both nonbonded (van der Waals-
like) and electrostatic interactions. The electrostatic 
interactions arise primarily from the net dipoles of 
the two a-helices. In an a-helix, the individual 
peptide dipoles are oriented nearly parallel to the axis 
of the helix. Their alignment gives rise to a dipole 
of considerable strength.403-405 As a result, the 
electrostatically most favorable orientation of two 
a-helices would be one with an antiparallel orienta
tion of the helix axes. In calculations using ECEPP, 
the nonbonded interaction (arising from the 12-6 
term of the potential) dominates the total energy of 
an assembly of a-helices. At the same time, both 
types of interactions, nonbonded and electrostatic, 
contribute comparably to the energy differences be
tween various ways of packing, i.e. both participate 
significantly in choosing preferential orientations.401 

It should be noted, however, that the presence of a 
solvent with a high dielectric constant (such as water) 
is expected to weaken electrostatic interactions be
tween a-helices, by reducing the magnitude of dipole 
interactions, and because of the unfavorable desol-
vation of the helical dipoles upon association; these 
effects have been observed in calculations of helix 
packing energetics using numerical solutions to the 
Poisson—Boltzmann equation.406 The presence of 
water may also provide a stabilizing effect for the 
association, however, by way of hydrophobic interac
tions involving buried nonpolar helical faces.127,274 
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Figure 11. Schematic illustrations of an antiparallel four 
a-helix bundle. The helices are shown schematically as 
cylinders. Arrows indicating the helix axes point from the 
N- to the C-terminus. (Reprinted from ref 409. Copyright 
1988 K.-C. Chou et al.) 

A bundle of four a-helices is a frequently occurring 
structural pattern in globular proteins.402'407,408 The 
main structural features of this bundle are the near-
antiparallel orientation of neighboring pairs of helices 
and a tilting of the helix axes that corresponds to a 
left-handed twisting of the entire bundle (Figure 11). 
Both features are qualitatively consistent with an 
analysis of the nonbonded and electrostatic interac
tions between the constituent helices.409 In a bundle 
in which neighboring a-helices are sequentially con
nected by polypeptide links in nonhelical conforma
tions, these links also seem to contribute significantly 
to the stabilization of the bundle.410411 Carlacci et 
al. have also introduced simulated annealing algo
rithms in these packing calculations to improve the 
sampling of different packings;412 earlier work was 
limited to local minimization from a series of stra
tegically chosen starting arrangements. Another 
interesting variation introduced recently in helix 
packing calculations is the method of Tuffery and 
Lavery,413 where side chain-side chain interactions 
are globally optimized at each tested relative spatial 
arrangement with a rapid rotamer-based proce
dure.329 Improved algorithms for packing nonregu-
lar414 and regular415 structures by energy minimiza
tion have been presented recently. 

b. Packing of Helices into Coiled Coils. Sev
eral fibrous proteins, such as a-keratin,416 col
lagen,417-419 and tropomyosin,420 exist in the form of 
coiled coils that are formed by several closely inter
acting polypeptide chains. The coiling of two a-he
lices around a common axis is also the main feature 
of the leucine zipper dimerization motif observed in 
a large class of DNA-binding proteins.421-423 

Coiled coils can be described in terms of major and 
minor helices. The minor helix is formed by the 
individual polypeptide chains. The axis of each 

minor helix is not straight, in contrast to the axis of 
simple helices, but it follows a helical path, denoted 
as the major helix, around the common axis of the 
coiled-coil structure. In simple helices, every residue 
along the chain must have identical backbone dihe
dral angles. If the residues within one repeat unit 
do not all have the same backbone dihedral angles, 
a coiled coil is formed.424 An example of this coiled 
coiling of strands in /?-sheets has been mentioned in 
section III.A.l. 

Crick has derived a general formula which relates 
the parameters of the major and minor helices of a 
coiled-coil polypeptide chain.425 Geometrical rela
tions have also been derived between the dihedral 
angles of polypeptide chains and the parameters that 
characterize the minor and major helices of coiled 
coils, together with the establishment of relationships 
between the major helix and the averaged structure 
of the minor helix.424 It has been shown that severe 
geometrical restrictions exist for the formation of 
coiled-coil structures that correspond to a given, rigid-
geometry, backbone conformation of a polypeptide 
repeat unit.424 

Better understanding of coiled-coil a-like helical 
conformations can be achieved by examination of 
high-resolution structures (see review by Cohen and 
Parry426). Of particular interest is the structural 
work on the leucine zipper portion of the GCN4 
transcription factor. This apparently simple system 
has shown the dramatic effect of amino acid changes 
in the association surfaces in determining the oligo-
merization state of these peptides. Harbury et al. 
have found that mutant versions of GCN4 with 
different sets of hydrophobic residue types (along the 
hydrophobic face of the helix) can lead to dimers, 
trimers, or even tetramers, as confirmed by equilib
rium analytical centrifugation, and, in some cases, 
by high-resolution X-ray crystallography.427 These 
results extend earlier, surprising, findings428 with a 
peptide designed to form dimeric coiled coil struc
tures, and thus expected to be quite similar to GCN4, 
but which turned out to be a triple-stranded coiled 
coil. This conclusion was based on both high-resolu
tion X-ray crystallography and sedimentation equi
librium measurements; thus, trimer formation is not 
an effect of crystal packing. These authors also 
conducted interesting model calculations that indi
cated that a simple hydrophobic potential119,429 could 
qualitatively account for the observed results. It 
would be interesting to see if this type of calculation 
could also account for the results on GCN4 mutants 
obtained by Harbury et al.427 Slightly more complex 
calculations had been carried out earlier on GCN4 
and on models of other leucine zipper dimers by 
Krystek et al.430 

An interesting calculation on the GCN4 system was 
carried out by Nilges and Brtinger,431 before the high-
resolution structural work on the same system had 
been completed. For these calculations they used the 
information that the 37-residue peptide would dimer-
ize in a coiled coil form. Thus, while this study 
cannot be considered a global "folding" of this mol
ecule, the parameters of the coiled coil, such as 
crossing angle and helix—helix separation, were 
determined by the computational procedure. Their 
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method included extensive restrained dynamic simu
lated annealing (DSA) runs without solvation, fol
lowed by free MD in explicit solvent.431 The results 
have been compared432 with the subsequently deter
mined X-ray structure,423 and found to be in very fair 
agreement: the rms difference was 1.26 A for back
bone atoms. Perhaps more significant, the DSA-MD 
protocol clearly moved the model coordinates toward 
closer agreement with experiment, when compared 
with the initial crude model. The authors conclude432 

tha t "with the current state of methodology and 
availability of computing power it is possible to make 
(accurate) low-resolution predictions for structures 
when the folding motif is known". 

More recently, Skolnick and co-workers have ap
proached the calculation of the structure of GCN4 
using a hierarchical method433 (cf. section ILB.4). 
Their computations started with completely random 
conformations of the two monomers, and approxi
mately correct coiled coils were obtained after simu
lations on a lattice (see section III.E.3) that included 
energy evaluation based on statistical potentials89 '434 

(see also section II.A.2). In analogy with the work 
of Nilges and Briinger,432 refinement of these crude 
structures by molecular dynamics, including explicit 
solvent, led to quite accurate predictions for the 
structure of GCN4: the rms deviation from the X-ray 
structure423 for the backbone atoms was 0.81 A. It 
should be stressed that, in this work, the authors did 
not include any information beyond the amino acid 
sequence (and the knowledge that there is dimeriza-
tion in the system). 

In the triple-stranded collagen molecule,417-419 the 
minor helix formed by each polypeptide chain is left-
handed. The axes of the minor helices follow right-
handed major helices, winding around the major 
helical axis.435436 The coiled coil may be described 
in terms of the translational repeat D and the 
azimuthal angular repeat 0 per tripeptide repeat 
unit along the major helical axis ^̂ 24,436,436 a s shown 
in Figure 12. Furthermore, in triple-stranded (or 
higher-stranded) coiled coils with screw symmetry, 
there exist two kinds of disposition of the equivalent 
repeat units in neighboring strands, viz. "clockwise" 
and "counterclockwise", depending on whether these 
repeat units are related to each other by right-handed 
or left-handed screw symmetry operations, respec
tively.435-436 

c. a/p Packing. The association of ana-helix with 
a /3-sheet is a frequently occurring structural motif 
in proteins. The packing is related to the properties 
of the helix and the sheet. Because of the twisting 
of the /3-sheet, its surface is saddle-shaped, i.e. it can 
be described as a hyperboloid, while the a-helix is 
essentially a rigid rod. An energy computation 
carried out for a poly(L-VaI) sheet interacting with a 
poly(L-Ala) helix predicted that there are four classes 
of low-energy arrangements.437 The structures may 
be characterized by the angle Q between the axes of 
the helix and the sheet. In the most favorable 
arrangements, the helix is nearly parallel or nearly 
perpendicular to the direction of the strands, because 
then the helix lies along a tangent line to the curved 
surface, so that it can interact with the sheet along 
its entire length (Figure 13). The two remaining 

Figure 12. Definition of the coiled-coil helical parameters, 
using the collagen-like poly(Gly-Pro-Pro) triple helix as an 
example. One tripeptide unit (Gly-Pro-Pro) is shown in a 
major helical coordinate system. The major helical axis (z), 
the translational repeat per tripeptide (D), and the angular 
repeat per peptide (©) are indicated. (Reprinted from ref 
435. Copyright 1976 Wiley.) 

arrangements (not shown in Figure 13) can be 
described as diagonal packings, in which only either 
the middle or the two ends of the helix are in contact 
with the sheet (with Q near -60° or +60°, respec
tively). Of these two, the first one has a low energy, 
while the second one is less favorable. 

A histogram of observed distributions of Q in 163 
a//S packings in 39 proteins shows a large peak near 
Q = 0°, a broad distribution in the range of - 3 0 to 
-60°, a smaller peak near ±90°, and a few structures 
near +60°. The positions of the maxima in the 
distribution correspond to the preferred orientations 
in the computed structures.437 As a result of se
quence differences and of packing interactions with 
the rest of the protein molecule, the observed peaks 
are much broader than the computed distribution for 
the one computed model structure that was studied 
by Chou et al,437 but the grouping into well-defined 
classes is evident. 

d. pifi Packing. Because of the hyperboloid shape 
of twisted /3-sheets, as discussed above, two /3-sheets 
can be packed efficiently in only two distinct classes 
of low-energy arrangements.438 In the energetically 
most favored class, the strands of the two sheets are 
nearly parallel or antiparallel to each other, so that 
the two curved structures are complementary over 
most of their surfaces (Figure 14). This class is seen 
frequently in protein crystal structures, where it has 
also been termed "aligned packing".399'439 In the other 
class, with 1-4 kcal/mol higher energies, the strands 
are nearly perpendicular to each other, and good 
packing occurs between the corner of one sheet and 
the interior of the other sheet. In observed structures 
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Figure 13. Space-filling representations of a right-handed a-helix of CHsCO-(L-AIa)I6-NHCHs and a right-twisted parallel 
/3-sheet Of[CHsCO-(L-VaDe-NHCHs]5 in low-energy packing arrangements: (left) Q = 4.4°; (right) Q = -89.4°. Only heavy 
atoms are shown, with approximate van der Waals radii. 2JN and Ec indicate the N- and C-terminal blocking groups, 
respectively, of the /3-strands. (Reprinted from ref 437. Copyright 1985 Academic.) 

Figure 14. Stereoscopic picture of the low-energy near-parallel (aligned) packing of a [CHsCO-(L-IIe)6-NHCHs]5 parallel 
/3-sheet (open atoms) on a [CHsCO-(L-VaI)6-NHCHs]5 antiparallel /3-sheet (filled atoms). All hydrogen atoms are omitted. 
(Reprinted from ref 438. Copyright 1986 Academic.) 

handed form is energetically much more favorable 
than the left-handed form.440 Its low energy arises 
from favorable interactions between the a-helix and 
the /3-sheet, just as in a/fi packing, and from the 
absence of conformational strain in the nonhelical 
parts of the connecting chain. 

This crossover also occurs in many proteins in the 
doubled form ^cgSa/3, called the Rossmann fold.408'442 

Although the two a-helices usually connect neighbor
ing pairs of strands in the /3-sheet, other connectivi
ties may occur. A computation of the conformational 
energy of a structure composed of two a-helices and 
a three-stranded /3-sheet, with various connectivities 
between the five elements, has established that right-
handed crossovers are also favored in /3a/3a/3 struc
tures.443 

f. /^-Barrels. Two types of/3-barrels are observed 
in proteins, one with parallel and one with antipar
allel chains.408'444 The parallel-chain barrel involves 
a-helical segments in /?a/3a/3 form, whereas the 
antiparallel-chain barrel usually does not involve 
intervening a-helical segments. /3-Barrels usually 
are not straight, with strands running approximately 
parallel to the axis of the barrel (as in Figure 16a), 
but the strands are right tilted, as shown schemati
cally in Figure 16b. This tilting is in part a conse
quence of the intrinsic right-handed twisting of the 
/3-sheet, but the following effect also contributes to 

Figure 15. Schematic representation of (a) a right-handed 
and (b) a left-handed Pafi crossover structure. (Adapted, 
with permission, from Richardson, ref 408.) 

of this type, termed "orthogonal packing", there is 
usually a covalent connection between a corner of the 
two sheets.399-439 

e. /Ja/? Crossover Packing. Two parallel strands 
of a /3-sheet often are connected by a peptide chain 
that contains an a-helix. This crossover connection 
could, in principle, be either right or left handed, as 
shown in Figure 15.4<>8,440 Actually, crossovers in 
globular proteins are always right-handed, with very 
few exceptions.408,441 This strong preference has been 
interpreted as a consequence of the right-handed 
twist of the /3-sheet, resulting in a reduction of strain 
in the connecting chain between the strands for a 
right-handed crossover.441 A comparison of the two 
forms of the crossover by means of conformational 
energy computations has established that the right-
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Figure 16. Schematic drawing of an eight-strand /3-bar-
rel: (a) nontilted barrel, with strands running parallel to 
the axis of the barrel, and (b) right-tilted barrel, with 
strands inclined with respect to the direction of the axis of 
the barrel. Dashed lines schematically indicate the inter-
strand hydrogen-bonding pattern. (Reprinted from ref 445. 
Copyright 1990 Liss.) 

it. Tilting improves the packing of the side chains 
in a /3-barrel with bulky side chains, such as VaI, on 
the outside. As a result, the energy of an eight-
strand antiparallel /3-barrel, in which L-VaI and GIy 
residues alternate along the chains, is 8.6 kcal/mol 
lower in the right-tilted form than in the absence of 
tilting.445 Conversely, left-handed tilting is energeti
cally very unfavorable, because it would require the 
unfavorable left-handed twisting of the /3-sheet. 

The computations have also demonstrated the 
necessity for numerous residues with small side 
chains or GIy in alternating positions along the 
strands, because too many large residues cannot be 
packed into the inside of the barrel or their presence 
would lead to a severe distortion of the barrel.445 On 
the other hand, it is favorable to have large side 
chains on residues in the alternating positions, i.e. 
pointing to the outside of a tilted barrel. This is the 
pattern seen frequently in antiparallel /3-barrels in 
globular proteins.445446 Tilting increases the diam
eter of a /^-barrel slightly, so that there is more room 
to accommodate the internal side chains in a tilted 
/3-barrel.447 

3. Transitions 

Conformational transitions, for example, the hel ix-
coil transition, for which a large literature exists,305 

have also been treated.29 The helix-coil transition 
has been studied by statistical mechanics, making 
use of the one-dimensional Ising model, and has been 
addressed both for homopolymers448-449 and 
binary450-452 and multicomponent453"455 random co
polymers of amino acids. It has also been treated by 
molecular mechanics with computational methodol
ogy described earlier in this review.185 '456-459 

a. Molecular Theory of the He l ix -Coi l Tran
sition. A molecular theory has been formulated to 
compute the phenomenological Zimm-Bragg4 4 8 pa
rameters o and s of the thermally induced helix-coil 
transition, using empirical potential functions.456 

This required the computation of the free energy of 
both the helix and coil forms in water.165,459 The 
effect of water in these calculations was introduced 
by a continuum model that considers changes in the 
number of water molecules in the first hydration 
layer.460 The calculation of the free energy of the 
helix was based on the small-vibration harmonic 
approximation, and that of the coil was based on the 
nearest-neighbor approximation, i.e. ignoring long-
range interactions (see section II.A.4). The computa-
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Figure 17. s vs T curves for poly(L-valine) in water. The 
squares are the experimental results, and the line is the 
calculated result. (Reprinted from ref 459. Copyright 1974 
American Chemical Society.) 

tions were carried out for polyglycine,458 poly(L-
alanine),458 poly(L-valine)459 and poly(L-isoleucine).185 

Figure 17 shows the agreement between the com
puted and experimental results for poly(L-valine), 
wherein the dominant effect of hydrophobic interac
tions in the helix accounts for the increase in s with 
increasing temperature. A dominant feature that 
determines the s vs T behavior in Figure 17 is the 
difference in hydration between the helical and coil 
forms. Poly(L-valine) and poly(L-isoleucine) differ 
considerably in their hydration properties, due to the 
extra methyl group in the isoleucine side chain, so 
that the s v s T curve for poly(L-isoleucine) has the 
opposite slope of that of poly(L-valine).185 Simulations 
of helix formation that explicitly include a large 
number of water molecules have been reviewed 
recently by Hermans.461 These simulations are car
ried out on a particular model system, most often a 
small polypeptide and, because of the high compu
tational complexity, have not included temperature 
effects. Thus, they are in many respects complemen
tary to the calculations of s in homopolypeptide 
systems described above. 

In addition to the thermally induced helix-coil 
transition, the pH-induced transition [in poly(L-
lysine)] has been treated by similar computational 
methods.462 To obtain a physically realistic estimate 
of the electrostatic contribution to the free energy, it 
was necessary to introduce the screening effect of the 
ionic atmosphere (with a Debye-Hiickel screening 
function). It was thus possible to compute the effect 
of both pH and ionic strength on the transition curve. 
For example, the computed midpoint of the he l ix -
coil transition in poly(L-lysine) in 0.1 M salt occurs 
at a degree of ionization of ~0.5, compared to an 
experimental value of 0.35.462 This problem is being 
reconsidered by making use of recent treatments of 
the Poisson-Boltzmann equation to compute the 
electrostatic free energy of a biomolecule in an 
aqueous solution containing a supporting electro
lyte. 158>159-406 

b. Molecular Theory of H e l i x - H e l i x Inter-
conversion. The stable crystal arrangements of 
several homopolymers, including the thermally in
duced conversion between a- and cy-helical forms of 
polyamino acids, have been computed.463-464 These 
involve intermolecular, crystal-packing degrees of 
freedom, as well as the internal ones. Whereas poly-
(p-chlorobenzyl L-aspartate) exists as a right-handed 
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Figure 18. View of the minimum-energy crystalline 
co-helical form of poly(p-chlorobenzyl L-aspartate). (Re
printed from ref 464. Copyright 1974 American Chemical 
Society.) 

a-helix in solution and in the crystal, it is possible 
to convert it to an <y-helix in the crystal. Figure 18 
illustrates how favorable interchain interactions en
able the backbone to adopt the co-helical form in the 
crystal.464 Entropy effects play a role in the a to a> 
conversion as the temperature is raised.464 X-ray 
fiber-diffraction studies have demonstrated the pres
ence of the co-helix in crystals of this polymer.465 

Poly(L-proline) can also exist in two helical forms, 
I and II, with all-cis and all-trans peptide groups, 
respectively.466 Interconversion between these two 
helical forms can be induced by changes of solvent.466 

For example, form I is stable in 1-butanol, and form 
II in benzyl alcohol. The transition curves (shown 
in Figure 19), computed from empirical potential 
functions, also taking the effect of these solvents into 
account (using specific experimental binding con
stants for forms I and II, respectively), match experi
mental data467 fairly well.468 

B. Small Linear and Cyclic Oligopeptides 

The results of energy-based computations on model 
systems show at least qualitative reasonable agree
ment with experiment in a good number of cases. 
This relative success suggests that the overall ap
proach is reasonable We may therefore attempt to 
apply this methodology to polypeptides and proteins. 
However, as pointed out in section II.B, one of the 
main obstacles to be overcome is the multiple-minima 
problem. Therefore, the discussion of computational 
methods for treating polypeptides and proteins will 
include frequent references to the multiple-minima 
problem. For this purpose, we divide polypeptides 
into three categories: (a) small open-chain and cyclic 

f (volume fraction of n - Sutonol) 

Figure 19. Calculated transition curves of poly(L-proline) 
in n-butyl alcohol/benzyl alcohol at 70 0C. The fraction of 
form I helix, 6\, is plotted against the volume fraction of 
rc-butyl alcohol. The experimental points (from ref 467) are 
shown for degrees of polymerization of 217 (O), 90 (D), 33 
(A), and 14 (•). The various solid and dashed curves are 
based on different assumptions made in the computations. 
(Reprinted from ref 468. Copyright 1975 American Chemi
cal Society.) 

oligopeptides, (b) fibrous proteins, and (c) globular 
proteins. The approach to the multiple-minima 
problem is different for each category and, indeed, 
to some extent it has been solved for categories a and 
b. 

This does not mean that any of the methods 
reviewed here is able, consistently and with general
ity, to offer a complete and correct description of, say, 
small peptides in aqueous solution without any 
reference to experimental data. What it means is 
that it is probably possible to find a fairly complete 
set of low-energy conformations (perhaps including 
an excellent approximation to the global minimum) 
of small peptides described by a potential energy 
model without explicit solvation. Thus, it is probably 
fair to say that the multiple-minima problem has 
been solved for the ECEPP model of [Met]enkephalin, 
a five amino acid polypeptide, as strongly suggested 
by a number of studies in a growing number of 
laboratories.56'217-262'292'469 Its structure is shown in 
Figure 6. 

However, this is still a far cry from a complete 
theoretical description of the conformational behavior 
of the [Met]enkephalin real molecule in a given 
environment, especially in a complex solvent such as 
water. The relevance of this "correct" theoretical 
result to a real system depends on how good the 
potential functions are in representing it, and in how 
well the real system can be understood by looking 
only at the lowest energy conformation: the latter 
point is especially critical for flexible peptides. For 
example, calculations pertaining to nonpolar envi
ronments (e.g. those on melittin195-228'272) tend to be 
more successful than those applied to systems where 
polarization and other complex effects are more 
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Figure 20. Stereoviews of (A) computed (refs 470 and 471) and (B) X-ray (ref 472) structures of gramicidin S, showing 
the hydrogen bonds connecting the antiparallel chains and a hydrogen bond between the ornithine side chain and the 
phenylalanine backbone carbonyl group. 

dominant. For fibrous proteins we may have a 
similar situation; for example, using the fact that one 
should obtain a coiled coil triple-helical structure for 
collagen, it is possible to achieve a result in reason
able agreement with experiment, which probably 
reflects a global energy minimum of the model 
energy. However, it is not clear if the reviewed 
methodology would be capable of predicting the triple 
helix itself from sequence information alone. We cite 
the recent findings by Harbury et al.427 (described in 
detail in section III.A.2) as a reminder of the com
plexity of real polypeptide systems. 

The build-up procedure (section II.B.l) has been 
used to treat a number of linear and cyclic peptides. 
We will describe a limited number of examples, 
including applications to gramicidin S, melittin, and 
alamethicin. 

1. Gramicidin S 

Gramicidin S is a cyclic decapeptide, whose com
puted structure470'471 consists of two antiparallel 
extended chains, cross-linked with four hydrogen 
bonds, and connected by /3-turns at each end. A 
comparison of this structure (shown in Figure 20A) 
indicated that it was in good agreement with a 
subsequently determined472 X-ray crystal structure 
of a hydrated gramicidin S-urea complex (shown in 
Figure 20B). The small distortion in the lower right-
hand portion of the observed structure (Figure 20B) 
is most likely due to a nearby urea molecule which 
cocrystallized with the decapeptide. Subsequently, 
Mirau and Bovey473 carried out a 2D NMR ROESY 
experiment on gramicidin S in solution and compared 
the experimental spectrum with a theoretical spec

trum calculated from the published atomic coordi
nates470 of the energy-minimized structure; close 
agreement was obtained for the backbone protons. 
Differences that were observed for the side-chain 
protons were attributed to motion in solution. More 
recently, Xu et al.474 have also obtained NMR evi
dence that supports the calculated structures.470,471 

The computed result of Figure 20 is not a fortu
itously obtained one, but was arrived at (in the last 
stage of the build-up procedure) by energy minimiza
tion from 10 541 starting conformations, with the 
imposition of C2 symmetry. To provide an idea of the 
magnitude of the number of possible conformations, 
we refer to Figure 21 which shows some of the 
computed low-energy conformations of cyclo-hexa-
glycine.475 These are conformations that have some 
kind of symmetry, and there are still others (obtained 
by a Monte Carlo procedure476) with nonsymmetric 
conformations. A cyclic decapeptide such as grami
cidin S would have many more low-energy structures 
than the cyclic hexapeptide of Figure 21. When 
viewed in this light, it is seen how well the compu
tational methodology leads to the fairly unique low-
energy conformation of Figure 20. 

2. Melittin 

Because of the extremely large number of low-
energy minima for each component fragment of a 
polypeptide, the size of gramicidin S at first appeared 
to be the upper limit that could be treated by this 
methodology, and hence defined what was meant by 
"small" in the title of this section. However, recently, 
by not only eliminating high-energy structures of 
intermediate fragments, but also by reducing the 
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Figure 22. Stereoview of the lowest energy structure calculated for residues 1-20 of melittin. (Reprinted from ref 195. 
Copyright 1982 M. R. Pincus et al.) 

number of low-energy minima further by selecting 
only those having different backbone conformations 
(designated as nondegenerate minima477), it appears 
to be possible to treat larger structures in this 
manner. Thus, the buildup of large fragments from 
small ones may be possible. In fact, such a calcula
tion has been carried out for the 20-residue mem
brane-bound portion of a relatively small globular 
protein, melittin.195 Only two (very similar) low-
energy, largely a-helical structures were found;195 one 
of them is shown in Figure 22. Very similar struc
tures were also obtained by the EDMC,228 SCMTF,312 

and ant lion plus neural network272 methods. X-
ray273 and NMR478 structural information is available 
for melittin either as a tetramer in a crystal or as a 
monomer bound to micelles, respectively. Consider
ing possible environmental effects in either of these 
forms, the general qualitative agreement with ex
periment is satisfactory. 

3. Alamethicin 

A recent calculation479 of the effects of electric field 
on the alamethicin molecule bound at the lipid— 
water interface used a version of the build-up method, 
and a volume-shell model112,480 to estimate solvation 
effects. This study attempted to examine the entire 
conformational ensemble of alamethicin in water and 
at the lipid boundary, and a significant shift in 
conformational populations was observed when going 
from one environment to the other. The authors also 
included a simple model of the effect of the electro
static potential, which indicated the possibility that 
it may influence both the orientation and the con
formational equilibrium of the alamethicin molecules. 
Their results provide insights into the possible mem
brane-binding and voltage-gating mechanisms medi
ated by this peptide. 

4. Design of Constrained Peptides 

Dynamic simulated annealing (DSA) and quenched 
MD (QMD) have been used in a large number of 
studies of peptides in solution. As representative 
examples, we mention the work of Hagler, Rivier, and 
co-workers on analogs of gonadotropin-releasing hor
mone (GnRH),481482 and that of Pettitt, Hruby, and 
their colleagues on a number of biologically active 
peptides.483-485 In both sets of studies, the compu
tational methodology was applied first to fairly 
flexible molecules, and analysis of the resulting 
conformational ensemble suggested possible ways in 
which the molecules could be made more rigid. A 
number of these have been synthesized, and some of 
them have interesting biological activities, while 

being rigid enough to be studied by NMR techniques. 
For example, analysis of QMD simulations of a-mel-
anotropins, led to the design, synthesis, and testing 
of a new family of potent cyclic analogs.484 In a very 
similar fashion, the conformational studies of GnRH 
have facilitated the production of potent dicyclic 
antagonists.486 

5. Multiconformational NMR 

In this section we describe an emerging new, 
significant, role of energy calculations in the inter
pretation of NMR experiments on flexible peptides. 
Because of the large conformational heterogeneity 
present in these systems, one cannot simply extend 
the computational methodology successfully used to 
analyze NMR spectra of proteins in solu
tions. 242,295,487-491 jj. n a s become apparent that new 
procedures are needed to understand conformational 
ensembles.492 

An interesting approach has been described by 
Briischweiller et al. in their MEDUSA algorithm, 
which stands for multiconformational evaluation of 
distance information using a stochastically con
strained minimization algorithm.4 The essence of the 
method is to generate a large number of conforma
tions (usually in the hundreds), each of which satis
fies a subset of all the distance constraints derived 
from the NMR NOESY spectrum. Then these struc
tures are combined in pairs, triplets, or larger groups 
to produce an ensemble that satisfies all the experi
mental data. The procedure has been described in 
detail and used to analyze conformational equilibri
um of the cyclic decapeptide antamanide, eycZo(-Val-
Pro-Pro-Ala-Phe-Phe-Pro-Pro-Phe-Phe-).493 The re
sults have also been compared with detailed explicit-
solvent, chloroform, simulations of the same mole
cule.494"496 

A different approach was used by Nikiforovich et 
al.6 to analyze the conformational equilibrium of 
dermenkephalin in DMSO solution. Their procedure 
starts by generating a large statistical sample of 
conformations by carrying out a room temperature 
Metropolis Monte Carlo219 simulation in torsion angle 
space. The experimental data are then used to 
estimate a set of optimal statistical weights for each 
conformer, chosen in a way to minimize differences 
between measured properties (e.g. NOE cross-peaks, 
or vicinal coupling constants) and calculated en
semble averages. The result of the procedure is a 
set of conformers and associated statistical weights 
consistent with the experimental data. 

It is clear that other procedures able to generate 
conformational ensembles for a peptide may be useful 
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in this context; the version of MCM217 described by 
von Freyberg and Braun262 is of particular interest, 
given the apparent superiority of MCM over conven
tional Metropolis Monte Carlo in analysis of peptide 
conformations.56'249 

C. Crystals 

The structure derived by several "global" optimiza
tion procedures, shown in Figure 6, for [Met]en-
kephalin (which would be presumably the same for 
[Leu]enkephalin) does not agree with any of the 
polymorphic forms obtained from X-ray crystal-
lographic studies.497 The latter are either extended 
chains in hydrogen-bonded /^-sheets498-501 or hydrogen-
bonded hairpin conformations,502'503 but with the 
bend in a different region of the backbone. Clearly, 
mtermolecular interactions such as hydrogen bonds 
in the crystal influence the conformation of this small 
linear oligopeptide. Hence, calculations were carried 
out497 to minimize the energies of three types of 
crystals, the two observed ones and the one of Figure 
6 in different crystal packings. The minimized ener
gies of the two observed crystal structures were lower 
than that of any of the packing arrangements of the 
structure in Figure 6. If, however, an individual 
enkephalin molecule is removed from any of the 
energy-minimized crystals, thereby depriving it of 
favorable interatomic interactions, then the lowest 
energy conformation of the isolated molecule is 
indeed that of Figure 6. Presumably, this latter 
structure undergoes a conformational change upon 
crystallization to make optimal use of intermolecular 
interactions. Hence, the structure of Figure 6 is 
considered to be the global-minimum one for the 
isolated molecule. Small cyclic molecules, such as 
gramicidin S, discussed in section III.B, are presum
ably less influenced by intermolecular interactions. 

Kitson and Hagler504 have carried out a detailed 
study of the cyclic peptide cycZo(-Ala-Pro-D-Phe-)2 in 
the isolated and crystal states. They used both static 
analysis by energy minimization, and molecular 
dynamics. The MD calculations of the isolated 
molecule led to a structure with an energy that is 
about 8.5 kcal/mol lower than that of the isolated 
peptide in the crystal conformation. Thus, although 
they do not claim to have explored the conformational 
space of the free peptide extensively, they can safely 
conclude that crystal interactions are capable of 
shifting the conformational equilibrium of small 
flexible peptides. Information about the conforma
tional behavior of the free peptide is available from 
NMR experiments in a variety of solvents.505 The 
MD simulations are at least qualitatively consistent 
with the NMR measurements. The calculations on 
the crystalline state included interactions within a 
unit cell (that contains two peptide molecules and 16 
water molecules), plus interactions with symmetry-
related unit cells up to a 15 A distance cutoff. They 
started the calculations with the water molecules in 
random but sterically acceptable positions; interest
ingly, their positions after energy minimization or 
after MD averaging came closer to the X-ray ones. 

Among others, Hall and Pavitt506 and Jorgensen 
and Tirado-Rives42 have carried out static energy 
minimization calculations of peptide crystals in order 

to test the adequacy of potential energy functions. 
There have also been a number of MD calculations 
of protein crystals by van Gunsteren and Karplus,507 

and by Hagler and co-workers.508 These simulations 
are important for tests of the accuracy of potential 
energy functions, because direct structural compari
sons with experiment can be made. 

Many simulations of proteins in solution have been 
compared with experimental data derived from X-ray 
crystallography.40 Discrepancies arising from errors 
in the potentials cannot be easily distinguished from 
legitimate differences between crystal and solution. 
Crystal simulations, although perhaps more difficult 
in execution, do not suffer in principle from this 
limitation. Nonetheless, as shown recently by Hagler 
and co-workers,508 details of the computations, such 
as the size of the cutoff distance for nonbonded and 
electrostatic interactions, can have profound effects 
on the quality of the simulations. They report that 
a change from 15 to 25 A in the cutoff distance is 
sufficient to improve the rms deviations between 
simulation and X-ray structure from 2 to less than 1 
A in MD calculations of S. griseus protease A in the 
crystal. A very detailed and carefully analyzed 
simulation of subtilisin in the crystal was described 
recently.509 This work includes a comparative survey 
of previous simulations of proteins in crystalline 
environments. 

D. Fibrous Proteins 

1. Collagen 

The structure of collagen is a direct consequence 
of its unique amino acid sequence in which every 
third residue is glycine, and the intervening two 
residues of each triplet (denoted X and Y) are 
frequently proline or hydroxyproline, respectively. 
The triple-stranded coiled-coil helical structure of 
natural collagen has been derived from fiber X-ray 
diffraction.417-419 Synthetic GIy-X-Y poly(tripeptides) 
form helical fibrous structures, some of which are 
collagen-like.510-512 The main structural features of 
collagen have been elucidated by means of confor
mational energy computations in a systematic series 
of investigations which dealt with various levels of 
structures, starting with the conformational analysis 
of the GIy-X-Y repeat unit, through the structure and 
stability of the triple-helical molecule, to molecular 
assemblies in microfibrils.512'513 Advances in instru
mentation and in peptide synthesis technology have 
enabled a series of high-resolution NMR studies of 
collagen-like peptides of well-defined composition and 
sequence to be carried out;514'515 these investigations, 
still in their early stages, are expected to add 
significantly to our current understanding of these 
systems. Jones and Miller516 have carried out an 
interesting study linking sequence and X-ray diffrac
tion data by an analysis using computer graphics and 
solvent accessibility calculations.121'517 They describe, 
and attempt to rationalize, a number of observations 
on triple-helix formation and suggest a fibril model 
for triple-helix association. 

Poly(Gly-Pro-Pro) serves as the simplest general 
model structure for collagen.435'512'513'518-519 Three 
equivalent poly(Gly-Pro-Pro) chains can be assembled 
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Figure 23. Calculated coiled-coil triple helix of poly(Gly-
ProPro) of lowest energy. (Reprinted from ref 435. Copy
right 1976 Wiley.) 

into a three-chain structure according to various 
symmetry arrangements, including coiled coils with 
screw symmetry, and having either of two disposi
tions of the strands and parallel-chain complexes 
formed by helices that are packed with either screw 
or rotational symmetry.435,436 The energy was com
puted for every possible symmetry arrangement for 
assembling three identical (Gly-Pro-Pro)4 chains in 
regular conformations. The lowest energy structure 
turned out to be a coiled-coil triple helix with screw 
symmetry (Figure 23). Its helical parameters are 
close to those of the collagen models derived from 
fiber X-ray diffraction measurements.417"419 Its atomic 
coordinates agree, to within an rms deviation of 0.3 
A, with the coordinates obtained subsequently for a 
single crystal of (Pro-Pro-Gly)io by high-resolution 
X-ray diffraction.520 The difference between the 
computed energy of the triple helix and the energies 
of the component polypeptide strands accounts closely 
for the observed enthalpy of the triple helix-to-
statistical coil transition of poly(Gly-Pro-Pro), if the 
contribution of the free energy of hydration, esti
mated by a volume-based shell model,115 is included 
in the computation.521 

In the first application of conformational energy 
computations to a real sequence in a collagen mol
ecule (a short triple-helical fragment of type I bovine 
skin collagen), it was shown that large side chains, 
such as Arg and Met, can fold tightly against the 
triple-helical backbone. The side chains contribute 
significantly to the energy of stabilization of the triple 
helix, by means of nonbonded and hydrogen-bond 
interactions.522 The role of intrachain salt bridges 
in collagen stability between Arg or Lys with GIu or 
Asp has been studied523 with the AMBER33 force 
field, both in vacuum and with explicit solvation. 
Although quantitative stability estimates are hard 
to provide, these calculations suggest an important 
role for these salt linkages. 

The same collagen-like triple helix is the most 
stable structure for the assemblies formed by three 
poly(Gly-Pro-Hyp)436 or three poly(Gly-Pro-Ala)524 

molecules, in agreement with X-ray powder diffrac
tion experiments.510 Poly(Gly-Ala-Pro), however, be
haves differently.525 Several coiled-coil triple-helical 
packing arrangements with low energy have been 
computed for this polymer, together with a parallel-
chain triple-stranded complex in which the polypep
tide chains take up conformations that are similar 
to those found in solid polyproline II526 or polyglycine 
j j 527 These results agree qualitatively with X-ray 
diffraction measurements on poly(Gly-Ala-Pro) films, 
which can contain either collagen-like or polyproline 
II-like chain assemblies, depending on the solvent 

used to prepare the film.528,529 The computations 
have provided a qualitative explanation of these 
observations because they suggest that poly(Gly-Ala-
Pro) has several low-energy structures, and one can 
expect that its relative energy is modified by interac
tions with various solvents. However, the calcula
tions have not yet included the effects of these 
solvents explicitly. 

The collagen-like triple helices can be assembled 
into microfibrillar structures. As the first step in the 
theoretical analysis of the energetics of fibril forma
tion, the geometry and energy of packing of two triple 
helices has been computed.530'531 The preferred ori
entation depends on the amino acid sequence. In the 
computed lowest energy packing of two [CH3CO-(GIy-
Pro-Pro)5-NHCH3]3 triple helices, the two molecules 
are arranged nearly parallel to each other, with an 
orientation angle of -10° between the two helix axes 
(Figure 24). On the other hand, both near-parallel 
and near-antiparallel packings with low energies 
have been computed for [CH3CO-(Gly-Pro-Ala)s-
NHCHs]3 triple helices.530 This result suggests that 
the observed preference for the near-parallel packing 
of molecules in collagen fibrils is not merely a 
nonspecific packing effect but it is an energetic 
consequence of specific residue-residue interactions 
between the triple helices and, in particular, it is due 
to the frequent presence of imino acids in the 
sequence.530 

The substitution of Hyp for Pro in position Y, where 
4-Hyp (4-hydroxyproline) is found exclusively in 
natural collagen as a result of post-translational 
hydroxylation, enhances the stability of the near-
parallel packing structure.531 Exactly the same 
computed packing arrangement of two triple-helical 
molecules is favored by the interaction energy for 
both [CH3CO-(GIy-Pr0-PrO)5-NHCHa]3 and [CH3CO-
(Gly-Pro-Hyp)5-NHCH3]3, but the stability of the 
packing for the latter is enhanced by nearly 2 kcal/ 
mol per Hyp residue, because of the formation of an 
intermolecular hydrogen bond between the side-chain 
hydroxyl group of Hyp in one molecule and a back
bone carbonyl group in the second molecule (Figure 
25). This computation has provided at least a 
qualitative explanation for the observed stabilization 
of collagen fibrils by the presence of Hyp.532 An 
analysis of the change of thermostability upon proline 
hydroxylation and of the denaturation temperature 
of several naturally occurring collagens (with varying 
Hyp content) has been given recently, in an attempt 
to provide support for a water-bridged mechanism in 
Hyp stabilization of collagen structure.533 

The triple helices in an observed collagen mi
crofibril present a 5-fold symmetry of packing.534 

Computations on bundles of poly(Gly-Pro-Hyp) triple 
helices indicate that optimal packing, with the main
tenance of most of the favorable nonbonded and 
hydrogen-bonding interactions (as in Figure 25), can 
be achieved easily in a bundle formed by five triple 
helices.535 Chen et al.536 have also carried out an 
energy minimization study, with the AMBER force 
field,33'34 of a five-stranded model using (Gly-Pro-
Pro)„, (Gly-Pro-Hyp)„, or (GIy-AIa-AIa)n; with n — 4, 
12, and 16. They report that the structural charac
teristics of the computed microfibril are consistent 
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Figure 24. Computed lowest energy packing arrangement of two [CH3CO-(Gly-Pro-Pro)5-NHCH3]3 triple helices, showing 
the near-parallel alignment of the two triple helices. Arrows point to residues which are in van der Waals contact. (Reprinted 
from ref 530. Copyright 1984 Wiley.) 
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Figure 25. Computed lowest energy packing arrangement of two [CH3CO-(GIy-PrO-HyP)5-NHCH3I3 triple helices, showing 
the near-parallel alignment of the two triple helices and the O-H* • O=C hydrogen bonds between the triple helices (shown 
with dashed lines). The arrows point to residues which are in van der Waals contact. (Reprinted from ref 531. Copyright 
1986 American Chemical Society.) 
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Figure 26. Computed model structure for the crystalline domain of silk II, with "in-register" arrangement of the sheets, 
viewed along the direction of the polypeptide chains. The figure shows the lowest energy packing for three stacked 
antiparallel five-stranded /3-sheets formed by CHsCO-(L-AIa-GIy)3-NHCH3 chains. The sheets are perpendicular to the 
plane of the drawing. Hydrogen bonds within each sheet (not shown explicitly) are horizontal. (Reprinted from ref 541. 
Copyright 1991 Wiley.) 

with those obtained for collagen by X-ray diffraction 
and electron microscopy. More recently, a role for a 
structural pat tern of charged amino acids has been 
suggested to account for the periodicity and chiral 
appearance of skin collagen fibrils.537 These calcula
tions were carried out with the AMBER force field,33,34 

and some aspects were confirmed with X-PLOR51 

calculations using the CHARMM35 force field. Thus, 
conformational energy computations can lead to an 
increased understanding of the structure of supramo-
lecular assemblies of a fibrous macromolecule. 

2. Silk Fibroin 

Silk fibroin is a block copolypeptide of crystalline 
domains (with high GIy and Ala content) and less 
crystalline domains. The crystalline domains of 
Bombyx mori silk contain the repeating amino acid 
sequence Gly-Ser-Gly-Ala-Gly-Ala (with some repeat
ing Gly-Ala sequences at their ends), and they can 
exist in two morphologies, for which models have 
been proposed on the basis of fiber or powder X-ray 
diffraction studies.538 The more stable form is known 

as silk II. A detailed structural model, consisting of 
packed pleated /3-sheets, was first proposed for silk 
II by Marsh et al.539 and refined by Fraser et al.540 

The structure of the less stable silk I form is less well 
understood. 

Conformational energy computations have been 
carried out on packed sheet model structures, com
posed of poly(L-Ala-Gly) chains as a simplified 
model.541 Such chains can be assembled into two 
kinds of /3-sheets, viz. those in which all Ala side 
chains project from the same side of the sheet (termed 
in-register sheets) and those in which the Ala side 
chains point alternately to the two sides of the sheet 
(termed out-of-register sheets). The computations 
have confirmed tha t the structure with the lowest 
energy is formed of antiparallel in-register /3-sheets, 
packed in such a way that the Ala-containing sides 
of the sheets face each other and the Gly-containing 
sides also face each other (Figure 26), as in the 
models proposed earlier for silk H.539540 The unit cell 
parameters of the computed structure agree closely 
with the observed values for silk II. A second, higher 



2218 Chemical Reviews, 1994, Vol. 94, No. 8 Vasquez et al. 

Figure 27. Computed model structure for the crystalline domain of silk I, with "out-of-register" arrangement of the sheets, 
viewed along the direction of the polypeptide chains. The figure shows the lowest energy packing for three stacked 
antiparallel five-stranded sheets. Each sheet is formed of alternating CH3-CO-(L-AIa-GIy)3-NHCH3 and CH3CO-(GIy-L-
AIa)3-NHCH3 chains. The sheets are perpendicular to the plane of the drawing. Hydrogen bonds within each sheet (not 
shown explicitly) are horizontal. (Reprinted from ref 541. Copyright 1991 Wiley.) 

energy computed structure has also been found, in 
which each strand forms a coiled coil, with residue 
conformations (for Ala and GIy, respectively) that 
correspond to a local right-handed and left-handed 
twist of a strand alternating along the chains. The 
strands are assembled into antiparallel out-of-
register hydrogen-bonded sheets. These, in turn, 
stack into a structure in which every pair of adjacent 
sheets forms the same kinds of contacts (Figure 27). 
The computed unit cell dimensions of the structure 
are consistent with observed powder X-ray reflections 
and the observed density of silk I.542 Therefore, this 
structure is proposed as a model for the crystalline 
form of silk I. 

E. Globular Proteins 

Despite the apparent formidability of extending the 
methodology described in section II to globular 
proteins, it now appears to be feasible to address at 
least some important aspects of protein structure. 
With presently available computer time, several of 
the foregoing methods for surmounting the multiple-
minima problem can be applied to small globular 
proteins. As pointed out in section II.B.5, the per
formance of some of the best sampling procedures has 
started to shift the emphasis of the problem toward 
the design and development of more accurate repre
sentations of protein conformational energetics. 

1. Modeling by Homology 

If the X-ray structure of a homologous protein is 
known and available, then it can be used as a 
template to compute the structure of the globular 
protein of interest for which only the amino acid 
sequence is known. Presumably, the template pro
vided by the known homologous structure will lead 
to a potential energy well that is close to that 
characteristic of the global (free) energy minimum 
of the protein of interest. How close these wells are 
will depend to a large degree on the percentage of 
identical or conserved amino acids between the two 
sequences. In most cases, most of the variation in 
amino acid sequence in a family of proteins will be 
on the surface rather than in the interior core.543,544 

The amino acid sequence of the unknown structure 
and the X-ray coordinates of the homologous struc
ture provide a starting point that usually is of high 
energy because of steric overlaps. However, these are 
often easily relieved during the course of energy 
minimization. For example, this procedure, with the 
ECEPP potentials or its precursors, has been applied 

to compute the structure of a-lactalbumin545 from 
that of lysozyme (and compared with the subse
quently determined X-ray structure546), those of three 
snake venom inhibitors547 from that of bovine pan
creatic trypsin inhibitor, and angiogenin548 from that 
of ribonuclease A. 

Greer549,550 has developed a general scheme for 
homology modeling by utilizing the information from 
several members of a family of proteins homologous 
to the one of interest. By achieving maximal overlap 
of members of the family, these substructures are 
used to build the molecule of interest. This method 
has been applied to a variety of proteins, e.g. to 
deduce a model for human renin based on structures 
from the family of aspartic proteinases,551 and a 
model of the complement protein C5a from the 
structure of C3a.552 Eventually one or more proposed 
models are also refined by energy minimization, or 
by restrained MD. Blundell and co-workers have 
developed a very similar protocol, which they call 
COMPOSER,553-556 that progressively builds the 
conserved structural core (structurally conserved 
regions, or SCRs in Greer's terminology) from a 
structural consensus of a protein family (achieved by 
a multiple structural alignment procedure), followed 
by a loop-building algorithm (see below). 

The approaches of Blundell and Greer extend the 
applicability of homology modeling to situations 
where the identity may be at or below 30%. This is 
due largely to the efficient use of information on a 
protein structural family, rather than on an indi
vidual protein. Recently, using very similar proce
dures, Ring et al.270,557 and Sudarsanam et al.558 

independently have shown that these model struc
tures can be useful in discovery of lead compounds 
for drug design. The success of these calculations, 
both involving proteases, depends to a large degree 
on the fact that the target active sites are among the 
most structurally conserved regions in these proteins. 
Thus, even large errors that may possibly occur in 
some loop regions may not seriously affect the results 
of their applications. 

Protein modeling by homology can be divided into 
a number of steps. First, one has to identify one or 
more proteins of known structure that are likely to 
possess similar three-dimensional structures; i.e. find 
a set of structures that are indeed "homologous". 
Second, it is necessary to establish an alignment 
between the sequence of the target protein and that 
(those) of the known structure(s). In the limit of high 
(about 50% or higher) amino acid sequence identity 
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(or homology), these two steps are rather straight
forward, and good alignments may be achieved with 
few or no insertions and deletions. When one has 
weaker sequence identity, special procedures may 
have to be applied as outlined below. Third, after a 
reliable alignment is obtained, it is possible to build 
a model for the conserved core of the target protein. 
Fourth, nonconserved structural segments or loops 
are built in. At different stages of the overall process, 
it may be necessary to use specialized partial re
building tools to generate side-chain conformations 
on a largely fixed backbone or on an incomplete side 
chain (e.g. modeling a substitution of leucine from 
alanine), or full backbone coordinates from only 
a-carbon coordinates. Some of these tools are re
viewed below. It is also possible or desirable to use 
energy minimization or MD refinement tools at 
different stages of the procedure, most crucially at 
the final stage after a complete model has been built. 
A final important step in a complete building-by-
homology study is validation of the resulting model. 

In the subsections below, we review in detail 
approaches and applications to address the most 
important steps in modeling by homology. The 
emphasis and importance of each of these steps 
depends largely on the sequence similarity between 
target and template(s). In the limit of very high 
similarity, say point mutations, side-chain packing 
calculations and energy refinement may be the most 
important steps. In these cases, one usually expects 
very small structural displacements, and thus the 
success or failure of the calculation ought to be 
assessed by very detailed comparison of atomic 
positions. On the other hand, in the limit of very 
weak homology, a lot of emphasis should be placed 
in justifying the use of a particular template, and 
later, on obtaining a good alignment. Clearly, sub
sequent modeling can do little to recover from serious 
mistakes at this stage. In the present state of 
technology, efforts of this nature aim to produce 
qualitatively correct folds and approximate residue-
residue relations; the loop regions may contain some 
errors, and a few side chains may be misplaced. 

a. Alignment. The first step in a typical homol
ogy modeling calculation is the choice of one or more 
proteins of known structure that are likely to be 
similar to the protein of interest or target. When the 
percentage of identical residues between template 
and target sequences is above about 30%, there is 
usually little doubt that the overall folds will be 
indeed very similar. When no protein of known 
structure satisfies this criterion, the identification of 
a useful template becomes a problem in pattern 
recognition. The realization that proteins with virtu
ally undetectable sequence homology may actually 
have very similar three-dimensional structures has 
encouraged the development of more sensitive meth
ods. Some of these are discussed in section III.E.2. 

Even when structural similarity is well established, 
calculation of the correct alignment between target 
and template(s) may be a difficult and error-prone 
process if the percentage identity is much lower than 
50—60%. The use of multiple target sequences and/ 
or multiple templates may increase the accuracy of 
the alignment. Another idea is to include as much 

structural information as possible in the alignment 
step. A number of solutions have been proposed and 
some of the methods of section III.E.2 may also be 
useful here. 

An illustration of the difficulty and importance of 
this step may be found in the predictions and 
subsequent structural determinations of the N-ter-
minal domains of CD4.559,560 Sequence comparisons 
suggested that CD4 may have strong structural 
similarity with other members of the immunoglobulin 
(Ig) family,561'562 and this observation encouraged 
several groups to calculate somewhat detailed three-
dimensional models of CD4 using antibody structures 
as templates.563-566 The experimental X-ray deter
mination confirmed that CD4 had an Ig fold;559'560 

however, none of the published predictions obtained 
even a correct alignment. (Bowman et al.566 perhaps 
obtained the least incorrect result; interestingly, 
these authors included multiple sequence informa
tion in constructing their alignment.) As a conse
quence, subsequent refinement and loop modeling 
were rendered almost meaningless by the serious 
alignment errors. 

b. Modeling of Loop Conformations. In align
ing the sequence of a protein for which a homology-
built model is desired, one often encounters insertions 
and/or deletions in relation to the template structure-
(s). Thus, the backbone structure of these regions 
has to be rebuilt. This may also be the case when, 
even in the absence of insertions or deletions, the 
degree of sequence similarity in a region may be so 
low as to render inapplicable the assumption of 
structural similarity. This problem can be formu
lated as the generation of loop segments between two 
fixed points of the polypeptide chain. 

A knowledge-based approach to solve this problem 
was proposed some time ago by Jones and Thirup,567 

and applied widely since.555,568'569 In this method, one 
searches the data base of protein crystal structures 
for polypeptide segments with the same number of 
residues as the loop to be built, and with compatible 
end-to-end geometry. Chothia and Lesk proposed a 
similar, specialized, protocol to model loop regions in 
antibody-variable domains.570 Their method uses the 
so-called canonical hypothesis, which says that the 
length of the loop and the presence of a small number 
of key amino acids are the main conformational 
determinants of these regions; this work extended 
early observations on antibody crystal structures by 
Padlan and Davies.571 The procedure was tested 
quite successfully in a comparison with subsequently 
determined X-ray structures of antibodies.572 

Blundell and co-workers555,556'573 tried to generalize 
the key-residue idea to cover other protein families; 
their procedure reduces to a variant of the Jones— 
Thirup method when no compatible loops can be 
found in the set of homologous structures. Knowledge-
based procedures of this type are limited by the 
relatively small conformational repertoire available 
in the protein structural data base. When there are 
good biochemical and structural reasons to expect 
such a limited repertoire, as appears to be the case 
for five out of the six hypervariable loops in antibody 
variable domains, this is actually quite an advantage, 
because the methods are usually very fast and 
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relatively simple to program. Most importantly, 
grossly incorrect conformations may never be con
sidered. However, there are cases, e.g. the third 
hypervariable loop in the variable heavy chain do
main in antibodies (CDR-H3), where this type of 
methods fails. In any case, it is important to supple
ment geometric building procedures with robust 
energy minimization strategies, in order to generate 
useful models. Such an integrated antibody modeling 
approach, which includes an automated implementa
tion of the Chothia-Lesk rules,570 has been developed 
by Levitt and co-workers,574'575 and often applied in 
design and analysis of engineered antibody mole
cules.576-578 Other protocols, also based on the 
Chothia—Lesk hypothesis, have similarly been found 
useful in a number of antibody engineering proj
ects.579-582 Broader overviews of antibody structure 
and engineering may be found in recent reviews.583-585 

To construct backbone structures for loops compu
tationally, a number of numerical procedures have 
been developed over the years. Go and Scheraga 
proposed a method for exactly closed rings, without 
and with symmetry, in molecules whose bond lengths 
and bond angles are fixed.586,587 Loops in proteins 
are special cases of rings in which the ends of the 
loop do not coincide. In a ring with n bonds around 
which rotation is possible, there are only n — 6 
independent variables. The values of the six depend
ent variables are determined by the conditions of ring 
closure. These conditions are mathematically equiva
lent to that of finding a series of operations that will 
transform a coordinate system at one endpoint of the 
loop into that at the second endpoint. Go and 
Scheraga derived a set of equations expressing the 
dependent variables as functions of the independent 
ones. They showed that there exist correlations 
between the dependent variables, permitting the 
evaluation for ring closure as a one-dimensional 
numerical search over the allowed range of one of the 
variables. 

Bruccoleri and Karplus588,589 used the Go-Scher
aga algorithm to model loops in proteins. They 
modified the original formulation by allowing bond-
angle bending whenever the simultaneous set of 
equations did not have a solution. Their flexible-
geometry method has been incorporated into the 
program CONGEN,589 which is designed to execute 
loop searches in homology-modeling applications. In 
treating loops larger than three residues, CONGEN 
carries out searches over additional dihedral angles; 
however, the final closures are achieved by applying 
the modified Go—Scheraga procedure to three resi
dues only. This method has been quite successful as 
a main component of antibody modeling projects.209,590 

Dudek and Scheraga developed an alternative 
formulation of the equations, involving a local mini
mization procedure with respect to subsets of degrees 
of freedom, to improve computational efficiency.591 

Palmer and Scheraga592 modified the original formu
lation586 to take into account differences in the 
backbone geometry of various amino acids, and they 
developed a systematic procedure, based on localized 
conformational searches, to generate an ensemble of 
short loops, followed by energy minimization, ap
plicable to homology-based modeling.593 The results 

of Palmer and Scheraga from generating rigid-
geometry closures for five-residue segments592,593 

demonstrate, however, that bond-angle bending is not 
necessary to achieve satisfactory closures for chain 
segments five residues or longer in length. Instead 
of adding one or more bond angles588 as independent 
variables, these authors increase the number of 
variable dihedral angles to find solutions to the 
closure problem. In either case, the fit to a-carbon 
chains from experimental protein structures appears 
satisfactory. 

Another approach to loop searches was developed 
by Moult and James and applied to known crystal 
structures.594 Their method involves the selection of 
a representative set of {<j>,ip) values for each residue 
from low-energy regions of the (<p,ip) map. A series 
of loop fragments having various combinations of 
these (<p,tp) dihedral angles are then generated. 
Those fragments that come close to satisfying the loop 
closure requirements (as determined from a set of 
empirical rules) are then refined by energy minimi
zation in the presence of the rest of the protein. 

A third approach, the "random tweak" method, was 
developed by Levinthal and co-workers,595 and ap
plied to protein structures.596 The random tweak 
approach differs from others in that a systematic 
search of the loop conformations is not carried out. 
Instead, loop fragments are generated randomly and 
then constrained to meet the distance and orientation 
requirements for closure. This is achieved quite 
efficiently by solving the constraint equations using 
a method based on Lagrange multipliers. Most of the 
structures thus generated satisfy the closure con
straints and are then evaluated using energy-based 
methods. The side chains are truncated in this 
procedure, and no attempt is made to find a stable 
conformation for them until a later stage in the 
modeling. 

The advantage of the random tweak method is that 
it avoids the exponential increase in computing time 
with loop size, which is inherent in systematic 
searches (see the discussion in section ILB. 1). In an 
application of the method to protein loops, Fine et 
al.596 report that reasonably correct backbone con
formations for a number of loops were indeed located 
by this procedure. A much larger data base of 
predicted structures will be needed to show that this 
result is generally attainable. More recently, Smith 
and Honig have combined the random tweak method 
with an evaluation of the energy of each candidate 
loop conformation using a finite-difference solution 
of the Poisson—Boltzmann equation;597 thus, they 
have attempted to include the effect of solvent on 
conformational preferences. 

An interesting application of the random tweak 
method, in combination with the loop procedure of 
Chothia and Lesk,570 has been presented recently to 
model an antibody of potential therapeutic value.598 

Earlier, Rees and co-workers590 have similarly com
bined the Chothia—Lesk method, a variant of the 
Jones—Thirup spare parts567 procedure, and the 
modified Go—Scheraga586 algorithm used in the CON-
GEN program,589 in a protocol to model antibody 
hypervariable loops. 
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A perturbation approach to loop closure has also 
been developed by Braun.599 This method requires 
that an initial chain closure be located; this starting 
structure is then perturbed by making small changes 
in the initial dihedral angles, and then carrying out 
a minimization to produce another closure. A prob
lem with this method is that the "allowed" changes 
usually involve only small alterations of the dihedral 
angles. Thus, only a fraction of the conformational 
space of the loop is searched, since larger changes in 
the dihedral angles rarely lead to closure. 

Other loop-closure procedures have been described 
recently. These include the bond-scaling algorithm 
of Zheng et al.,600 and the directed Monte Carlo 
procedure258'259 of Higo et al. (see also section II.B.3). 
The bond-scaling method has also been combined 
with the multiple-copy procedure of Elber and co
workers,32'317-319 and applied to the six hypervariable 
loops of an antibody.601 Summers and Karplus602 also 
described a specialized loop-closing protocol to t reat 
single insertions or deletions, in addition to changes 
involving proline residues; a more general procedure 
based on energy fingerprints has also been proposed 
by these authors,603 as a significant extension of the 
spare-parts approach of Jones and co-workers.567'604 

An interesting application of the biased Monte 
Carlo minimization method56'163,217 has been reported 
recently to model a loop of a designed monomeric 
version of the normally oligomeric trypanosomal 
triosephosphate isomerase (TIM) protein.605 The 
modeled loop was then compared with the subse
quently determined crystal structure, and the result
ing rms deviation was 0.6 A.606 

A general problem with the computational con
struction of protein loops is the choice of "the" correct 
conformation (or small set thereof) from the many 
usually generated in most of the protocols outlined 
here. Thus, as in the more general problems of 
complete peptide and protein calculations, the issues 
of sufficient sampling and correct evaluation of 
conformational energies are relevant here. There are 
aspects of the loop problem, however, that make them 
more attractive as test systems for new search 
protocols and energy models. Because of the con
strained nature of at least small loops (say, up to 
eight or a few more amino acid residues) the confor
mational space available can be much smaller than 
that of a free peptide of the same length. Also, it is 
easier in principle to include the most important 
environment influences, mainly the rest of the pro
tein, although solvation effects will be important, 
especially in solvent-exposed loops. Therefore, as in 
full globular proteins, one expects a more or less 
unique structure, enabling more meaningful com
parisons between calculations and experiments (of 
course, there will be cases where particular loops in 
proteins may be flexible enough to render meaning
less the notion of a "correct" conformation). Unlike 
full globular proteins, of course, the conformational 
space is drastically reduced, perhaps to the point 
where some of the multiple minima-solving proce
dures described in this review could reliably find 
excellent approximations to the "global minimum" for 
a given potential energy model. 

The methods outlined in this section concentrate 
on searches of the conformational space of the 
backbone; clearly, full side-chain structures will be 
required for correct evaluation of the relative energies 
of alternative loop conformations when using atomic 
potentials. Several of the protocols reviewed here do 
include treatment of side-chain conformations to 
some degree. Specialized side-chain building proto
cols have also been developed and are described 
below. Finally, we mention that protocols for protein 
loop calculations may also be adapted successfully for 
computation of protein—peptide complexes; in fact, 
the bond-scaling algorithm of Zheng and co-work
ers600 has been applied recently to study MHC 
protein-peptide complexes.607 

c. Partial Rebui lding Tools. In homology- and 
other protein-modeling studies, it is often necessary 
to reconstruct full atomic models partially from 
incomplete coordinate sets. For example, partial 
rebuilding is used when carrying out nonconservative 
amino acid substitutions, or when modeling full 
peptide segments from backbone models of loops. 
Also, when starting with simplified models of pro
teins (or protein loops) in which only a-carbons are 
initially treated, one may need tools to construct full 
backbone models. Refinement of X-ray structures 
from low-resolution incomplete data is a special case 
of this problem.608'609 In this section, we describe 
methods to generate full backbones from Ca traces 
and full side chains from backbone or from noncon-
served side chains. 

i. Full Backbones from a-Carbons. Protocols to 
compute full main-chain coordinates from informa
tion on the Ca's can be divided into knowledge-based 
or "spare-parts" methods, and computational proce
dures. The first type were inspired by the J o n e s -
Thirup method567 already mentioned above. In this 
procedure, a data base of high-resolution protein 
structures is searched for full segments that have the 
best possible match to the input set of Ca coordinates. 
As shown by Jones and Thirup567 as well as by 
others,610 good matches between arbitrary pairs of 
protein segments may always be achieved for up to 
size five or six residues. Thus, a parameter of these 
methods is the fixed or variable size of the segments 
one tries to match. An automated procedure was 
described by Claessens et al.568 and found to be able 
to match experimental backbone coordinates with 
rms deviations of a little over 0.5 A, when the correct 
Ca coordinates were used as input. This protocol 
used a number of screens, starting with end-to-end 
distance matching, and ending with full optimal 
superpositions, in an effort to find the largest possible 
segment in the data base with good geometric match 
to the input coordinates. 

An improved procedure was described in detail by 
Levitt.611 In this method, which is also capable of 
building entire side-chain conformations, segments 
of fixed size are matched to the input coordinates. 
An interesting feature is the use of stochastic averag
ing whenever arbitrary decisions seemed to creep into 
the design of the algorithm, followed by a restrained 
energy minimization procedure. Another interesting 
result is the rebuilding of full models from even a 
partial list of Ca coordinates. The performance for 
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correct Ca input is 0.3—0.5 A rms deviation over a 
set of eight well-resolved proteins. 

Jones et al. have recently updated their original 
methodology to develop a protocol useful in model 
building during crystallographic analysis.612 Holm 
and Sander613 have also developed a version of the 
spare-parts method, and achieved rms deviations of 
around 0.4 A, starting from experimental O coordi
nates. Wendoloski and Salemme569 have given a very 
brief description of a segment-matching backbone 
reconstruction algorithm within their PROBIT com
puter program. They report rms deviations of 0 .3-
0.4 A in a test limited to three small proteins. 

Among computationally based procedures, the 
method of Purisima and Scheraga614 seems to be the 
first one described in the literature. In their proce
dure, they looked for solutions in terms of dihedral 
angles <p—tp in an effort to fit standard-geometry full 
backbone models to input Ca coordinates. The pro
cedure was quite successful in recreating full back
bones from coordinates consistent with the same 
standard geometry; however, it failed with experi
mental Ca's that were incompatible with standard 
values of bond lengths and angles. Some of these 
problems were addressed by Palmer and Scheraga,592 

by using their modified version of the Go—Scheraga 
loop-closing method. Neither of these studies pre
sented systematic comparisons between experimental 
full backbone coordinates (e.g. N, C , C, O) and those 
computed from knowledge of the a-carbon coordi
nates alone. Thus, although it does seem quite 
possible to fit standard-geometry backbones to a wide 
range of experimental a-carbon arrangements, it is 
not known how much the resulting full backbone 
coordinates would deviate from the experimental 
ones. 

An alternative formulation of the Purisima— 
Scheraga algorithm was developed by Rein and co
workers and termed the A-algorithm.615 They use the 
auxiliary Xi and Xi variables of Nishikawa et al.616 to 
describe the orientation of the two (assumed planar) 
peptide groups about a central a-carbon. Changes 
in these variables do not perturb the overall path of 
the a-carbon trace. Thus, in the context of fixed O 
coordinates, these variables present a more conve
nient description of backbone geometry than the 
usual dihedral angles cp and tp. Vicinal X\ and Xi are 
coupled by the constraint of fixed bond angle about 
the Ca. These authors did not present tests of their 
method with experimental Ca coordinates. 

A second procedure based on peptide plane orien
tations was described by Luo et al.617 Their T 
variables are the same as the X's described above, but 
unlike previous work, they allowed for some degree 
of bond angle deformation about the central a-carbon. 
They used a scaling of the C a-C a virtual bond 
distance to treat small deviations from the ideal 3.8 
A value. They generated sequences of peptide ori
entations for segments of eight residues and chose 
the best by selecting combinations with resulting 
<p—\p values in the allowed regions of the map.17,594 

They tested their procedure with the experimental 
Ca coordinates of a small number of proteins and 
achieved rms deviations, for the full backbone, of 0.36 
to 0.47 A. They also recorded the number of peptide 

plane "flips"; i.e., cases in which the calculated and 
experimental T values differed by more than 90°, and 
found these to occur in about 2-5% of the residues 
tested. They included extensive tests for rebuilding 
the backbone of trypsin inhibitor618 from partially 
randomized input a-carbon coordinates, in order to 
simulate perhaps more realistic model-building situ
ations. In these cases, the rms deviations deterio
rated from 0.36 A for the exact coordinates, to 0.41-
0.54 for mean random shifts of 0.2 A, up to 0.64— 
0.84 A for mean shifts of 0.5 A; and from no peptide 
flips to 1—6 flips for the largest mean random shifts 
(of 0.5 A). 

A perhaps more satisfying and, certainly more 
accurate, realization of the idea of rotation of peptide 
groups was described recently by Payne.619 There are 
several interesting features in this procedure, includ
ing allowance for peptide plane deformation (thus, 
his Wu and Wp variables refer to orientations of mean 
peptide planes, and are not strictly identical to the 
X's and T"s of the other procedures) and use of an 
efficient dynamic programming algorithm to carry 
out the calculation of optimal WM and Wp combina
tions. The most notable point, however, may be the 
use of a potential of mean force approach as the key 
criterion to choose preferred peptide orientations for 
given input Ca coordinates. As in the schemes of 
Pohl94 and Sippl11'92 described in section II.A.2, this 
potential of mean force is derived by way of the 
Boltzmann law from a careful analysis of the popula
tions of peptide plane orientations in loop regions (i.e. 
neither a-helix nor /3-sheet) in a large set of high-
resolution protein structures. This procedure achieves 
rms backbone atom deviations of 0.2-0.3 A for most 
proteins tested, and peptide plane flips occur in less 
than 1% of the cases. Interestingly, rms deviations 
increase only linearly with mean random shifts in 
the input a-carbon coordinates of up to 1 A; thus, the 
procedure seems quite robust. The method is quite 
rapid and appears to be the most accurate one 
described in the literature to date. 

Rey and Skolnick proposed a novel procedure to 
reconstruct full backbone coordinates from only 
a-carbons.620 A key element in their procedure is the 
observation of an empirical correlation between the 
orientation of the Ca-& bond and the local geometry 
of the virtual a-carbon chain. After the /?-carbon 
positions are obtained, a series of trigonometric 
relations provide enough information to compute N, 
C, and O coordinates. In a test with six proteins, 
the rms deviations between computed and experi
mental coordinates were around 0.7 A, which is much 
worse than some of the procedures described above. 
After energy minimization with fixed a-carbons, the 
rms deviations improved to around 0.4 A. 

Bassolino-Klimas and Bruccoleri621 have adapted 
the CONGEN program589 to produce full backbone 
models from a-carbons; the rms deviations over a set 
of six test proteins are quite large, 0.5-0.99 A, and 
the method is very time consuming, 50—100 h on a 
workstation. Also, the described implementation 
does not allow a very close fit to the a-carbon 
coordinates themselves, which deviate from the X-ray 
values by 0.30-0.87 A. Thus, in its present state of 
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development, this method does not look very com
petitive with the best in the literature. 

Liwo et al. have recently described a backbone 
rebuilding algorithm.83 Their procedure, the dipole-
path method, is based on determining an extensive 
hydrogen-bond network between the peptide groups 
of the backbone. A single test of reconstructing the 
entire backbone of trypsin inhibitor led to rms 
deviations of about 1 A between calculated and 
experimental coordinates. The deviations for resi
dues involved in the "dipole path" are much lower, 
averaging about 0.4-0.5 A. 

Methods based on MD simulation techniques have 
been described by Correa622 and by Nilges and 
Briinger.431'432 In both procedures, the backbone (and 
side-chain) atoms are initially positioned in a random 
or arbitrary fashion, and their positions are later 
optimized during restrained MD. Correa622 pre
sented a test on a-lytic protease in which he achieved 
a very low, 0.19 A, rms deviation between calculated 
and experimental backbone coordinates, but at the 
cost of many hours of computer time (these calcula
tions also yielded coordinates for the side-chain 
atoms). The procedure of Nilges and Briinger uses 
an optimized244 sequence of changes in the energy 
function after essentially random positioning of the 
missing atoms; they applied their procedure in the 
calculation of the structure of GCN4431'432 described 
earlier in this review (see section III.A.2.b). They 
make allusion to more extensive tests, but neither 
general timing nor rms deviation information has yet 
been given for their protocol. 

ii. Side Chains from Backbones. A large and 
growing number of procedures for calculating side-
chain coordinates from backbone, or even just cc-car-
bon, coordinates have been described recently. Some 
of these methods are integral parts of larger pro
grams for protein homology modeling or peptide 
modeling. A number of them have been tested in a 
somewhat artificial, but nevertheless useful, system. 
This test system consists of generating side-chain 
conformations on a fixed, full, backbone usually taken 
directly from an experimental structure; in most 
studies, /3-carbons are model built from the N, O , 
and C atoms using standard bond lengths and bond 
angles. True homology-based protocols will include 
rules for how to use the structural information 
available in the template structure(s). 

Like other protein modeling tasks, side-chain mod
eling can be divided into knowledge-based and energy-
based methods. It is also possible to devise effective 
protocols that combine aspects of both kinds of 
methodology. A key idea in several of these methods 
is that of the rotamer library; i.e. the approximation 
that side-chain conformations can be represented 
fairly well by a limited number of canonical combina
tions of dihedral angles % that correspond closely to 
the trans, gauche-plus, and gauche-minus values 
expected from simple stereochemical considerations. 
Early observations on side-chain conformations in 
proteins623 and peptides624 appear to support the 
applicability of this approximation; subsequent evalu
ations625'626 agreed with their conclusions, but most 
recently the rotamer approach has been seriously 
questioned.627 For calculations using a particular 

energy function, theoretically derived libraries can 
also be used.196'197'589'628"630 

A prototypical rule/knowledge-based algorithm for 
side-chain modeling has been proposed by Sutcliffe 
et al.554 In this procedure, explicit rules are given 
for how to change from one amino acid type in the 
template structure(s) to the desired one in the target 
structure. When there is no correspondence (i.e. in 
loop regions) or when changing from GIy or Ala to 
longer residues, the most common rotamer in the 
backbone-dependent library of McGregor et al.631 is 
used. Steric clashes between newly built side chains 
and backbone, or between pairs of side chains may 
exist, and are expected to be relieved later by 
minimization or MD procedures. An application of 
a similar strategy was reported by Reid and Thorn
ton, starting from the a-carbon trace of flavodoxin.632 

Steric conflicts were resolved by a combination of 
computer graphics-assisted human intervention and 
limited use of refinement techniques. 

Summers and Karplus603'633'634 have refined the 
simplest knowledge-based protocols, by explicitly 
integrating conformational energy-based techniques 
at several steps. A detailed review of their methodol
ogy has been presented recently,603 and we describe 
the highlights here. Perhaps the key innovation of 
their method is the use of what they called "energy 
fingerprints", which for side chains are based on 
rigid-rotor (RR) energy maps. As in work described 
above, they start with a series of rules about which 
atoms to keep from the template structures, but then 
energy criteria are used to study ways in which 
missing atoms (including polar hydrogens) can be 
added to the model. RR maps are computed in turn 
for all the side chains being built, and localized 
refinements are carried out whenever these RR's are 
not compatible with what is expected from full 
experimental structures. (Some of this follows the 
earlier work of Gelin and Karplus.635) They have 
described a complete application to the C terminal 
domains of aspartic proteinases.634 

Independently, Levitt611 and Wendoloski and Sa-
lemme569 have presented similar data-based proce
dures to model missing portions of proteins; they call 
their methods SEGMOD and PROBIT, respectively. 
In particular, these procedures could be used to 
construct side chains, given the backbone; or to 
implement the necessary substitutions while model
ing by homology. In both approaches, searches for 
appropriate segments are conducted in a data base 
of high-resolution protein structures. In Levitt's 
procedure, averaging over random choices is followed 
by full energy minimization with tight constraints on 
the a-carbons. In a test calculation of eight high-
resolution proteins, the SEGMOD method611 was able 
to build full-atom models from experimental a-car
bons with rms deviations over all atoms of 0.93—1.73 
A (0.3-0.4 A for backbone, and 1.4-2.4 A for side 
chains). A particularly attractive feature of SEG-
MOD is the totally automated, and thus unbiased, 
fashion in which the calculations are carried out. (The 
test proteins were, of course, removed from the data 
base in these calculations.) By working directly on 
the protein data base, these two procedures, PROBIT 
and SEGMOD, do not deal explicitly with rotamer 
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definitions or substitution rules. A very similar 
computer program, XCHAIN, was used to assist 
model building in the X-ray analysis of the actin: 
Dnase I complex.636 These methods can be seen as 
important generalizations, to include side chains, of 
the original template building procedures of Jones 
and co-workers.567,604 

Partial rebuilding protocols that use extensive 
energy evaluations include the single point mutant 
calculations of Shih et al.,637 the coupled perturbation 
procedure of Snow and Amzel,638 and the iterative 
minimization calculations, LECS (local energy con
formational searches), of Schiffer et al.;107 the latter 
uses an empirical solvation procedure119 to help 
choose the best rotamers. Other protocols proposed 
and tested for peptide segment modeling are those 
of Bruccoleri and Karplus as part of the CONGEN 
program,589 and of Gibson and Scheraga as a com
ponent of their implementation of the build-up pro
cedure.199 The CONGEN method was used later to 
refine639 models of misfolded proteins,640 and to build 
complete models of antibody loops,209-590 as mentioned 
earlier. 

Several studies have attempted to calculate side-
chain conformations by using variants or refinements 
of the rotamer library idea. There are three major 
ways in which the search space can be defined. The 
first and most common defines sets of discrete rota
mers, and some kind of combinatorial search is 
conducted in the resulting (discrete) space. A second 
way, introduced by Lee and Subbiah,641 uses a fine, 
10°, grid for each side-chain torsion angle. The 
major, practical, difference between these two ap
proaches is that the first one allows precalculation 
of all the possible residue-residue pairwise interac
tions. Thus, the energy evaluation during the com
binatorial search reduces to look-up and summation 
over table entries. This is in general not possible or 
practical when using fine torsional grids. A third 
approach abandons discretization schemes altogether 
and, in principle, examines the continuum of torsion-
angle values. Published approaches also differ in the 
kind of energy functions used, as well as in the details 
of the combinatorial algorithms used. 

In the work by Ponder and Richards625 on tertiary 
templates, the main objective was to generate all 
possible sequences compatible with a given three-
dimensional structure; thus, exhaustive enumera
tions had to be carried out. This limited their 
application to small sets of amino acids within buried 
hydrophobic cores. By relaxing these requirements, 
and by redirecting the goal of the calculations toward 
producing low-energy packing arrangements for a 
single sequence, a number of groups have developed 
algorithms for side-chain calculations. Tuffery et 
a j 329,642 extended the rotamer libraries of Ponder and 
Richards by considering a larger number of protein 
structures; they then proposed and tested several 
algorithms to solve the side-chain packing problem. 
Holm and Sander finetuned a very rapid simulated 
annealing algorithm for side-chain packing.613,643 

They used a simple nonbonded energy function, 
consisting of a Lennard-Jones 9-6 potential. The 
softer 1/r9 (versus the more common 1/r12) repulsive 
term appears to correct approximately for possible 

errors introduced by the discretization simplification 
implicit in rotamer-based procedures. More recently, 
they have added an empirical solvation function 
procedure for ranking and evaluation of protein 
models.133 

Wilson et al.644 presented a heuristic search pro
cedure to analyze the side-chain optimization prob
lem in "rotamer space". Perhaps the most interesting 
aspect of this work is the use of an empirical 
functional form that includes an approximate treat
ment of solvation. The parameters for this function 
had been optimized in earlier work645 that built an 
empirical correlation between calculated and experi
mental data on the relative catalytic efficiency of 
variants of a-lytic protease on a number of peptide 
substrates. 

A considerable extension of the backbone-depend
ent rotamer libraries of McGregor et al.631 has been 
carried out by Dunbrack and Karplus,629 who also 
presented an integrated protocol for calculation of 
side-chain structures. Their procedure includes ex
tensive energy minimization with the CHARMM 
force field. 

A very interesting rotamer-based optimization 
scheme was described by Desmet et al., as the dead
end elimination (DEE) theorem.646 Unlike many of 
the procedures outlined above, which rely on Monte 
Carlo or, in general, stochastic approaches to tackle 
the combinatorial problem, in DEE a more system
atic, yet practical, approach is pursued. The main 
idea is to eliminate hierarchically rotamer conforma
tions that cannot possibly be included in the global 
minimum (of course, within the discrete space spanned 
by all rotamer combinations). In more detail, the 
total energy of the protein can be expressed as 

^total = ^template + I E(ir) + £ £ E(ij,) (36) 
i i j>i 

where t̂emplate is the self-energy of the backbone 
(including /3-carbons) plus fixed side chains (if any), 
E(ir) is the interaction energy between residue i in 
its r rotameric conformation and the fixed template, 
and E(I1Js) is the pairwise interaction between con
formation r of residue i and conformation s of residue 

j . As mentioned above, it is feasible, for relatively 
small numbers (three to a few hundred per residue) 
of rotamer possibilities, to precompute all possible 
values of E(ir) and E(ijJ. Having these results, one 
can identify rotamers ir incompatible with the global 
minimum-energy conformation (GMEC). Thus, con
formations including such incompatible rotamers can 
be categorized as dead-ending, and eliminated from 
a subsequent systematic or stochastic combinatorial 
search. The single rotamer DEE theorem can be 
expressed as follows: if for two rotamers ir,it of 
residue i the inequality 

E(ir) + X min EHj1) > E(it) + £ max EdJ1) (37) 
j s j s 

holds true, then ir is incompatible with the GMEC. 
The original paper presented extensions of DEE to 
pairs of rotamers, but the formulation for these cases 
was modified somewhat by the same group and 
renamed the fuzzy-end elimination procedure.647 
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Realizing that the rotamer approximation repre
sents an idealization of the conformational possibili
ties of side-chain conformations, Lee and Subbiah641 

proposed a new model in which torsion angles are 
mapped to a 10° grid. In this model, amino acid side 
chains described by only one dihedral angle % can 
have up to 36 possible conformations (compared to 
just three for most rotamer libraries), while longer 
ones will have well over 1000 conformations (e.g. 362 

or 1296 for residues with two #'s). This precludes 
straightforward generalization of the precalculation 
strategy, which is key for the efficient implementa
tion of rotamer-packing calculations. However, some 
degree of precalculation, e.g. for side chain—backbone 
interaction terms, is still possible. In the original 
analysis of this model, Lee and Subbiah used an MC 
simulated annealing protocol followed by statistical 
averaging over the set of the few thousand lowest 
energy conformations found during a long run. A 
modification based on self-consistent mean-field ideas 
(see section II.B.6) has resulted in considerable speed 
up of the algorithm.648 

Argos and co-workers627 have questioned discreti
zation approaches by showing that only 70—95% of 
amino acids in proteins have conformations within 
20° of idealized rotamer definitions. They later 
proposed and tested a method649 that combines the 
simplest stereochemical considerations of side-chain 
torsion angles (i.e., they use -60°, 60°, 180° for most 
X's, and 0°, 90° for aromatic %2's) with extensive 
continuum optimization in side-chain torsional space 
using the ECEPP/2 potential.6162 They presented 
tests for six proteins, and also carried out a homology 
modeling exercise. They argued that the combina
torial problem in side-chain calculations is nonexist
ent and, indeed, their procedure examines only one 
side chain at a time, except in the last step in which 
a local optimization, varying all individually placed 
side chains, is carried out. 

Interesting procedures for side-chain computations 
have been described by Fine and colleagues in a 
report of the modeling of an anti-CEA antibody.598 

In their protocol for side-chain modeling, they first 
apply a scheme in which an original set of typical 
rotamers is "customized" for the particular three-
dimensional environment of a given residue by 
optimization in torsion space. Rotamers that con
verged to conformations that were the same within 
a 10° window were collapsed into one. Thus, for 
example, two leucines in different parts of the 
sequence may end up with different sets of optimized 
rotamers at this stage. They then applied one of 
three procedures to tackle the resulting combinatorial 
problem, while the method of Argos and co-workers649 

seems to stop right after the equivalent of the 
customization stage of Fine and co-workers. The 
three procedures outlined by Fine's group include a 
systematic search (applicable for only small numbers 
of side chains), MC simulated annealing, and, third, 
a method they call NOVOSIDE, which performs an 
iterative self-consistent heuristic search. Unfortu
nately, they did not conduct test calculations on 
known structures, and thus we cannot presently 
compare the performance of their protocol with other 
methods. In any case, the idea of customizing the 

initial rotamer library is quite attractive, and in 
theory it should be able to supersede the use of 
backbone-dependent rotamer libraries. 

Other procedures have used MD to "sprout" side-
chain atoms from backbones or from a-carbon chains. 
The methods of Nilges and Briinger431 and of Cor-
rea622 are direct extensions of the procedures de
scribed in the previous section. David650 has used 
ideas originally presented by Nilges et al.244 (for 
protein structure determination from NMR) to de
velop a general method for side-chain calculation. 
Finally, we mention here again the mean field-
related LES procedure of Roitberg and Elber317 (see 
also section II.B.6). 

d. Validation of Models. Experimental reports 
of protein structures derived by either X-ray crystal
lography or NMR very often include a series of 
validation tests in addition to measures of agreement 
with experimental data (e.g. R factors). These tests 
include plotting of <j>-ip pairs to look for possible 
occurrences in "forbidden" regions of the map, num
ber and quality of hydrogen bonds, deviations from 
ideal bond lengths and bond angles, etc. It thus 
follows that homology-modeling exercises should 
include at least these tests. The number and kind 
of tests of this nature depends on the percent of 
identical amino acids between sequence of the target 
and that (those) of the template structure(s). In the 
limit of very high sequence homology, the key as
sumption of similar overall fold is justified, and thus 
the emphasis in the validation part of the study 
should be placed on the stereochemical quality of the 
results. Careful energy refinement involving sequen
tial restrained MD or minimization will often result 
in high-quality three-dimensional models, although 
the effects of even single mutations in cores of 
proteins are still hard to predict in detail. (See for 
example the X-ray structural determinations of X-re-
pressor mutants by Lim et al.651 and their comparison 
with previous calculations.) 

When homology is low, one cannot rely on stereo
chemical quality alone. As the intriguing study of 
Novotny et al.640 clearly shows, it is quite possible to 
achieve very good potential energies (especially in 
vacuum) even when homology is nonexistent. In 
their influential study, they took two protein domains 
of identical length and known structures, the VL 
domain of the antibody REI and the hemerythrin 
molecule, and modeled one on the backbone of the 
other, thus producing REI-like hemerythrin and 
hemerythrin-like REI. In both cases, they obtained 
final energies comparable to those of the optimized 
correct structures. 

Other properties of model structures that one 
should consider include distribution of hydrophobic 
and hydrophilic groups in the core and surface,120'639652 

polarity of the protein surface,653 packing of regular 
structure elements, etc. The 3D-1D Profiles654'655 and 
similar656 methods are often very useful here as well. 
Simple solvation potentials119,639 can distinguish the 
correctly from the wrongly folded structures in the 
REI-hemerythrin example mentioned above. Many 
of these tests can evaluate parts of the model, and 
thus suggest relative quality for different segments 
along the sequence. It is also important to realize 
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that, in the limit of low homology, one is usually 
forced to consider more than one alternative model, 
and thus validation protocols become more critical. 

e. Consensus Approaches. An alternative to 
the step-by-step homology building strategy outlined 
in sections III.E.l.a—c is to use features of the 
template protein(s) to define an objective or pseudo 
energy function, which is then optimized for the 
sequence of the target. The simplest and oldest 
expression of this idea is in terms of distances, and 
indeed is a possible way to generate models consis
tent with standard covalent geometry.545'548,591 

A significant generalization is the use of informa
tion from homologous families to define different 
distance ranges; the original description of this kind 
of approach seems to be that of Srinivasan et al.;657 

Havel and Snow presented a very elegant procedure 
using distance geometry,658 and shortly thereafter 
Srinivasan and co-workers described a refinement 
based on similar ideas.659,660 Snow has also described 
an alternative formulation for parameterization264 

accompanied by an effective simulated annealing for 
optimization.263 More recently, SaIi and Blundell 
developed the program MODELLER,661,662 which 
generalizes this approach to consider many other 
structural features beyond only distances. The re
sulting, complex, optimization problem is tackled by 
a technique similar to the variable-target-function 
method of Braun and Go.206 

While presently more computer time-consuming 
than more conventional methods, the consensus 
rebuilding strategies described in this section tend 
to be more amenable to automation. Thus, they may 
in many cases be less "human" time-consuming. 
Also, their computational structure describes more 
rigorously the assumptions behind the entire homol
ogy modeling protocol; this may lead to a more 
straightforward evaluation of the faults and merits 
of the final models. Finally, when used with a large 
data base of homologous structures, these procedures 
may still produce reliable results when the percent 
of sequence identity goes below about 25%. Using 
the classical methods of Greer549,550 and of Blundell 
and co-workers,555,556 the modeling may be reliable 
only if the percent identity between target and 
template sequences is above the 25—30% range. 

2. Homology Extension 

Perhaps the most reliable way available today to 
predict overall protein folds is by homology modeling. 
It is thus not surprising that a great deal of effort 
has been spent in attempts to extend these methods 
to cases with no detectable sequence homology. This 
approach is justified by the observation made by 
Chothia that the hundreds of proteins of known 
three-dimensional structure present a limited num
ber of unique folds.663 This is especially true if one 
looks only at protein domains: most larger proteins 
have multidomain structures. The analysis of Dorit 
et al. of the protein sequence data base664 lends 
further support to this view. In this, limited, formu
lation of the protein folding problem, one has to test 
only the likelihood that a given sequence will attain 
a particular known fold (the "inverse" folding prob
lem). The main weakness of this formulation, of 

course, is the dependence on previously observed 
three-dimensional structures. A more extensive dis
cussion of the limitations of this approach was given 
recently by Sippl.11 

The realization that the number of unique folds 
may be limited, together with the rapid pace at which 
protein structural information is becoming available, 
has spawned an entire subfield whose goal is the 
rapid and objective characterization of folds beyond 
the classic taxonomy and anatomy of Richardson408 

to provide computationally more useful definitions. 
A key component of this work is methodology for 
comparison of protein structures; examples include 
the approaches of Taylor and Orengo665 and SaIi and 
Blundell666,667 that use generalizations of the dynamic 
programming method that include multiple compari
sons of structural features, the graph theoretical 
methods of Willet and co-workers,668 and the recent 
work of Rose and Eisenmenger669 and Zuker and 
Somorjai.670 The last two most closely resemble the 
initial approaches for structural comparison pio
neered by Rossmann,442,671 and by Remington and 
Matthews.672,673 Another useful methodology in this 
context is the differential geometry description of 
polypeptide a-carbon chains of Rackovsky and Scher-
a g a 674,675 n is p0Ssibie to use this structural descrip
tion, based on concepts of the differential geometry 
of space curves, to characterize polypeptide chains 
at the length scale of four or five residues. More 
recently, the method has been generalized to make 
it applicable to arbitrary length scales, and it has 
been used for the classification of known protein 
structures.676 

These homology extension procedures are not 
completely different from more de novo procedures, 
and in fact Taylor677,678 has mapped a continuum of 
methodologies ranging from regular local structure 
predictions to the more favorable cases of homology 
modeling reviewed above. 

One avenue to carry out the fold-sequence recogni
tion is by analysis of many aligned sequences. The 
promise of this general approach may be illustrated 
by the success of Bazan in predicting the structures 
of cytokines and cytokine receptors679-681 (most re
cently in the correction682,683 of the originally incor
rect684 interleukin-2 structure), and the early accu
rate predictions of Benner and co-workers.685,686 

Other examples of somewhat successful application 
of these principles include the prediction of the 
overall fold of the HIV protease by Pearl and Tay
lor687 from the structures of eukaryotic aspartic 
proteases, and by Barton and co-workers of SH2 
homology domains.688 Both of these were subse
quently confirmed by high-resolution structural 
data.689-693 

Related in philosophy is the 3D-ID Profiles method 
of Bowie, Liithy, and Eisenberg,654 which detects 
structural similarity between actins and 70 kDa heat 
shock proteins, although there is no detectable se
quence similarity between these two classes of pro
teins. This work can be seen as a three-dimensional 
extension of the sequence profile method of Gribskov 
et al.,694 which in turn is a key component of the 
pattern matching approaches of Bazan680,695 and 
Benner.686 (It should be noted, however, that the 
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methodology used by Benner and co-workers to derive 
structural predictions from sets of aligned sequences 
is quite different from that of other workers.696) A 
procedure that combined multiple sequence informa
tion with solvent accessibility had been proposed 
earlier by Bowie et al.697 while Lxithy et al.698 

developed a similar approach using information 
about regular local structures. In this context, the 
3D-ID Profiles method can be seen as the natural 
combination of these three approaches.694,697,698 Spe
cialized early versions of these ideas may be found 
in the definitions of tertiary templates for immuno
globulins by Taylor699 and for globins by Bashford et 
al.700 

A scheme related to the 3D-ID Profiles method is 
the template-matching procedure of Overington and 
co-workers.701,702 This is an extension of the amino 
acid comparison matrices commonly used in protein 
homology work. Their modification aims to exploit 
aspects of three-dimensional structure known in at 
least one of the proteins being compared. In fact, an 
appropriate summation over amino acid types may 
reduce their matrices to the type of parameterization 
developed in the Profiles method of Bowie et al.654 

After the initial publication of the methods of Bowie 
et al.654,655 and Overington et al.,701,702 several labo
ratories have proposed refinements: Godzik et al.89 

included pairwise and three-body terms in the profile 
calculation, Jones et al.703 presented a combination 
of the Profiles idea with the potential of mean force 
approach of Sippl11,92 (see also Ouzounis et al.704); and 
Maiorov and Crippen103 extended earlier work by use 
of a solution of a system of coupled inequalities that 
ensures that the derived parameters will indeed favor 
observed protein structures. (This work should be 
considered in the context of previous efforts by 
Crippen and his co-workers starting with design of 
potential functions for use with the energy embed
ding procedure; see sections II.A.2 and II.B.5). A 
detailed examination of different types of effective 
"knowledge-based" potentials has been given recently 
by Kocher and co-workers.705 

Another interesting approach is the hidden Markov 
model of Stultz et al.706 for estimating the probability 
that each amino acid in a protein sequence is part of 
a particular type of regular local structure. Other 
applications of hidden Markov models to proteins 
have appeared recently.707,708 

We close this section by mentioning the recent 
prediction of a three-dimensional model for the 
hormone-binding domains of steroid receptors.709 

Using a combination of techniques developed earlier 
by Wolynes and co-workers,104,105,710,711 these research
ers have proposed that there is structural homology 
between the steroid receptors and subtilisin-like 
proteases, even though there is no detectable se
quence similarity between these two families of 
proteins. Of course, final evaluation of this interest
ing proposal would have to await further experimen
tal work on the system. 

3. Simplified Protein Models 

Simplified computational methods can be used to 
investigate some of the overall features of the condi
tions for compact folding of the polypeptide chain and 

of the course of the folding process. Useful insights 
have been gained from a variety of computations in 
which a self-avoiding polymer is generated on a two-
or three-dimensional lattice, and occasionally in off-
lattice calculations. The polypeptide chain is repre
sented by virtual bonds between points that corre
spond to the centroids, or to the ct-carbons, of amino 
acid residues. In the case of lattice calculations, the 
restriction to discrete positions makes exhaustive 
modeling computationally feasible, because the num
ber of conformations remains finite and countable. 
The use of simplified forms of the interaction between 
residues in contact, instead of an actual distance-
dependent force field, helps to reduce computational 
time. This approach lends itself particularly well to 
the modeling of the folding process by Monte Carlo 
simulation and, for short enough chains, by complete 
enumeration of states. A general review of simplified 
protein models has appeared recently.712 

Although the simplest lattice models do not repro
duce details of specific interactions or the folding of 
particular proteins, they have been very useful 
because they provide general insights into several 
types of constraints tha t are presumably significant 
in determining which folded structures are feasible 
in a protein. Constraints investigated in this manner 
have included the compact filling of space, the 
preferential localization of polar and nonpolar amino 
acid residues on the surface or in the interior, 
respectively, the balance of long- and short-range 
interactions, and the cooperativity of collapse into a 
compact structure. 

Currently these simplified models are being stud
ied with two major purposes. One category of studies 
expects to reveal physical issues of thermodynamics 
and kinetics of protein folding; it is not the immediate 
goal of this work to provide a practical protocol for 
prediction of three-dimensional structures from amino 
acid sequences. Dill and co-workers,31,713 Shakh-
novich et al.714,715 and, at the earlier stages, Skolnick 
and collaborators716,717 have attempted to achieve this 
goal. A second group of studies has used slightly 
more complex models that at least in theory attempt 
to describe "real" proteins. The early work of Levitt 
and Warshel,81,82 Tanaka and Scheraga,718"720 and 
others, as well as some of the more recent calcula
tions by Skolnick and co-workers,10,434 fall in this 
category. These studies focus more sharply on the 
prediction of structure from sequence, and may or 
may not address the problem of folding pathways. 
(See the recent perspective by Levitt28 for a similar 
discussion on the definition of the "protein-folding 
problem".) 

Back in the early and mid 1970s, several simplified 
protein models were proposed and studied. Levitt 
and Warshel81,82 proposed a united-residue potential, 
which they then used to simulate protein folding by 
an ad hoc optimization procedure in continuous space 
(i.e., not on a lattice). This approach, which included 
use of pulling and pushing potentials, was criticized 
by N6methy and Scheraga1 and by Hagler and 
Honig.721 The criticisms were largely justified, but 
in retrospect, the pioneering value of the approach 
of Levitt and Warshel is reflected in a major part of 
the recent progress in this area. 
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Tanaka and Scheraga718"720'722 studied a hierarchi
cal model that made use of statistical trends derived 
from the then tiny structural protein data base: one 
portion dealt with short-range interactions and was 
very similar to secondary structure prediction pro
cedures; the long-range part consisted of a contact 
potential of mean force derived from data on 25 
proteins; the model was driven by a Monte Carlo 
procedure that produced changes in local conforma
tion with probabilities given by the short-range 
prediction scheme. (A very similar method has been 
described and applied in a folding simulation of 
myoglobin.723) The procedure, like other similar ones 
developed independently at about the same time, was 
largely unsuccessful, partly because not enough 
computational power was available, and the poten
tials derived from the small protein data base were 
noisy and unreliable. However, one should point out 
the many similarities between these approaches and 
the newer ones of Gregoret and Cohen,724 Skolnick 
and co-workers,10'434-725 Sippl and co-workers,92'726-728 

Sun,96 etc. 

Other early work includes the study of Kuntz et 
al.,729 which was very similar to that of Levitt and 
Warshel, and introduced a few novel points. Havel 
et al.730 studied a similar problem, but this time used 
the then-emerging tools of distance geometry. The 
latter work is important in two respects: first, it 
anticipated the eventual success of structure deter
mination by NMR, and second, it suggested useful 
avenues for prediction schemes. Similar work fol
lowed by Wako and Scheraga,731-733 and by Goel and 
co-workers.734'735 

The use of lattice models for the study of protein 
folding was introduced by Go and co-workers,736-738 

who generated models of polypeptide chains on a two-
dimensional square lattice, using the Metropolis 
Monte Carlo method. The specificity of interaction 
between various residues and the balance of long-
and short-range interactions was varied as a param
eter of the computations. It was shown that a 
cooperative transition between unfolded and com
pactly folded forms requires favorable specificity 
between at least some of the amino acid residues. As 
described later in this section, more recent work, 
using better lattice protein models, has shown that 
it is possible to obtain cooperative transitions in the 
absence of artificial specific interactions. Specific 
long-range interactions are essential for highly co
operative stabilization of the "native" compact con
formations, while short-range interactions primarily 
accelerate folding and unfolding transitions. At
tempts to extend these lattice calculations to three 
dimensions were not very successful mainly because 
their model lacked any built-in handedness prefer
ences.739 This caused, for example, formation of 
right- and left-handed a-helices in the same simula
tion of a model protein. Eventually, poor packing of 
these incompatible types of structures prevented 
observation of protein-like folding transitions in the 
more interesting three-dimensional lattice. 

Work on simplified models was not very active 
throughout the early to mid 1980s: real progress of 
models that rely on pseudopotentials derived from 
statistics of protein structure would have to await 

the explosion of experimental structural information 
that has occurred in the last five years. Interest in 
lattice models of proteins was largely revived by the 
independent efforts from the laboratories of Dill713,740 

and Skolnick.716'717 Both of these approaches are 
reviewed in some detail below. 

Dill and co-workers have proposed a two-dimen
sional square lattice polymer as a model for protein 
folding.713,740-742 Two types of amino acids are al
lowed in this model. By examining compact confor
mations only, it is possible to enumerate exhaustively 
all possibilities up to chain lengths in which protein
like behavior can be observed. One of the most 
interesting conclusions of this work is that, at least 
in this model, regular local structure formation, i.e., 
helices and sheets, is a consequence of compactness, 
a result which is consistent with theories about the 
driving forces for folding in proteins.713,742-745 In a 
square or cubic lattice the "helices" and "sheets" are 
only analogs and not exact representations of these 
structures in real globular proteins. This conclusion, 
however, may be a consequence of the square lattice 
formulation as simulations with an equally simple 
but continuum model by Gregoret and Cohen did not 
detect such a strong correlation between compactness 
and formation of regular local structure.746 However, 
compactness plus short-range interactions (chain 
stiffness) do lead to correct average local chain 
conformations observed in protein structures.745 

The simplicity of Dill's model allows a fairly 
complete exploration of sequence space, as well as of 
conformational space. It was found that only some 
sequences have globular protein-like behavior in the 
sense that they have a nearly unique preferred 
conformation. Similarly, the effect of mutations can 
also be treated in the lattice model by switching the 
character of some residues between polar and non-
polar. According to the model, mutations may be 
neutral in some positions along the chain, i.e. not 
affect the conformation of the most favorable "native" 
fold on the lattice, but in other positions they may 
alter the "native" conformation either by changing 
the balance of interaction energies or even by chang
ing the degeneracy of compact states, i.e. by affecting 
the entropy of unfolding.747748 Some of the "dena
tured" conformations are also highly compact, be
cause of numerous contacts between nonpolar resi
dues. Consequently, replacing a polar residue on the 
surface of the "native" state by a nonpolar one may 
shift the equilibrium away from the "native" state.748 

These lattice computations required exhaustive enu
meration and thus have been limited to short chains 
of less than 30 amino acids; hence, the validity of the 
conclusions for longer polypeptide chains has yet to 
be tested. It is thus important to point out that 
extensions of the model to longer sequences have 
been pursued by O'Toole and Panagiotopoulos using 
a scanning Monte Carlo algorithm,211212 and by 
Unger and Moult324325 using genetic algorithms (see 
also section II.B.7). 

More recently, Dill and co-workers have outlined 
a hydrophobic zipper (HZ) hypothesis of protein-
folding cooperativity, and used their simplified two-
dimensional lattice model proteins to test the effi
ciency with which an algorithm based on this 
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hypothesis searches conformational space.749,750 The 
authors have proposed the HZ as a method of 
assembly, not as a process of physical kinetics, 
because their scheme makes the assumption that 
there is no reverse rate for the formation of hydro
phobic contacts along the "pathway". Thus, this idea 
may be more useful as a basis for the design of 
heuristic protein-folding algorithms750 than as a 
correct physical description of the folding process. 
The HZ idea itself is similar to the hydrophobicity-
driven "nucleation site" formation proposed earlier 
by Matheson and Scheraga.751 

Shakhnovich et al.715 and Leopold et al.14 have 
carried out further explorations of lattice proteins, 
including the extension to three dimensions and to 
longer chains. They suggest that protein-like se
quences not only have thermodynamic preferences, 
but also encoded kinetic pathways. Thus, failure to 
"fold" within a reasonable time (using their MC 
algorithm) is interpreted as a property of the par
ticular "amino acid" sequence (they use a simplified 
two-residue-type alphabet). The work of Shakhnovich 
et al. has been criticized by Skolnick and co-work
ers,10 who argue that the MC procedure used in the 
former work may not be sampling space efficiently 
enough to justify the generality of their conclusions. 
More recently, SaIi et al.752 have studied the ki
netic behavior of the same715 simple cubic lattice 
model for proteins. They first carry out exhaustive 
enumeration over the compact states of a 27-residue 
model protein. In this manner they can identify the 
global energy minimum, and call the corresponding 
structure the "native" state. They then attempt to 
carry out a refolding simulation from random con
formations using a Metropolis Monte Carlo method, 
and thus record how often, and how quickly the 
simulation leads to the native state of the model. The 
most interesting conclusion is that the ease with 
which a given sequence can fold increases with the 
energy gap between the energy of the global-mini
mum structure and that of the structure with the 
next lowest value. In other words, they state that 
the necessary and sufficient condition for a sequence 
to fold efficiently is that the "native" state be a 
pronounced energy minimum. 

Leopold and Shakhnovich have presented an al
ternative philosophical justification of protein-folding 
calculations, which is based not on the traditional 
thermodynamic hypothesis, but on a kinetic point of 
view.16 Also of interest is the work of Shakhnovich 
and Gutin on establishing how the heteropolymeric 
nature of proteins plays a major role in the existence 
of unique preferred conformations.714'753 They stud
ied maximally compact structures of a 27-residue 
chain on a three-dimensional cubic lattice and con
cluded that the heterogeneity of interactions between 
amino acids was crucial in favoring the possibility of 
one "native" conformation over all the others. 

Shakhnovich and Gutin have also studied in more 
detail the necessary sequence conditions for globular 
protein-like behavior.754,7558 In particular, by carry
ing out Metropolis Monte Carlo in the space of 
variable sequences but fixed composition, they 
searched for sequences that presented a much pre
ferred compact conformation. They used only two 

types of amino acids and very simple forms of 
interactions. Detailed conformational study of these 
"ultra specific" sequences showed behavior similar to 
what one expects of real proteins, but without any 
special parameters in the potential function. Thus, 
it is possible to build more realistic models of protein 
folding by proper choices of sequences, while keeping 
the interaction potentials simple and generic. These 
results were obtained from analysis of 27-monomer 
chains. More recently, working with a more realistic 
80-monomer model protein, Shakhnovich755b has 
determined that two-monomer heteropolymers are 
not specific enough to have a unique structure (for a 
particular compact structure defined as "native"), 
while it is possible to have sequences of 20-monomer 
heteropolymers that do have a unique preferred 
structure, and thus protein-like behavior. In this 
work, a compact target structure is chosen, and then 
the "sequence design" procedure developed ear
lier754,7553 is applied to find an optimal sequence (for 
a given, fixed composition) for that structure. This 
designed sequence is shown to have a pronounced 
energy gap between its "native" conformation and all 
the other ones (compare with the work in ref 752), 
and is also shown to fold rapidly in simple lattice 
Monte Carlo simulations starting from random coil 
conformations. The author remarks that the ther-
modynamically oriented sequence design procedure 
at the same time solved the kinetic protein folding 
problem by making the "native" structure kinetically 
accessible. 

Some of the work described above has used the 
analogy between protein folding and spin glasses first 
studied by Bryngelson and Wolynes.756,757 Karplus 
and Shakhnovich recently reviewed the more theo
retically oriented work in the field, and offered an 
interesting and challenging perspective.30 

Skolnick, Kolinski, and co-workers have developed 
a set of more complex three-dimensional lattice 
models, with several versions differing by lattice 
coordination and by the number of interaction centers 
representing each amino acid residue. In particular, 
they have introduced a lattice in which successive 
residues occupy nonneighboring lattice sites selected 
in the manner of the "knight's walk" in chess,758 

together with the use of an additional lattice point 
to represent the side chain. This lattice provides a 
more realistic stereochemistry for virtual bonds. A 
critical evaluation of the behavior of several lattice 
models has been given.759 

Recently, Hao and Scheraga760 have used an en
tropy sampling Monte Carlo procedure761 (formally 
related to the multicanonical ensemble253) to treat a 
38—residue model protein on a Skolnick—Kolinski 
type lattice758 with three amino acid types (neutral, 
polar, and nonpolar) to demonstrate that the folding/ 
unfolding involves a first-order transition. Their 
simulation procedure included the set of local Monte 
Carlo moves used by Skolnick and co-workers,758,762 

augmented by more global moves similar to those 
used in the chain-building method of Rosenbluth and 
Rosenbluth.210 Using selected sequences, they fur
ther showed763 that optimized sequences exhibit long-
range cooperative behavior in the folding transition, 
while random sequences reflect only short-range (i.e. 
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nearest-neighbor) cooperative phenomena. Further
more, optimized sequences fold to unique lowest 
energy structures, but random sequences, when 
cooled in Monte Carlo-simulated annealing simula
tions, fold to compact but random structures. The 
numerical simulation results763 were also fit to an 
analytical formalism based on the mean-field theory 
of Bryngelson and Wolynes,756'757 thereby providing 
further insights into the folding behavior of polypep
tides with different sequences. 

The earlier simulations by Skolnick and co-workers 
were geared toward deducing generic aspects of 
protein folding with simplified sequences, and showed 
folding-like behavior. The conformational possibili
ties of these models have been explored by a very 
efficient dynamic Metropolis-like Monte Carlo algo
rithm.762 Perhaps more interestingly, proper statisti
cal choice of moves leads to dynamic behavior con
sistent with polymer Rouse dynamics in the limit of 
weak long-range interactions764,765 (see also recent 
work by Knapp766); this enables one to establish at 
least an approximate correspondence between real
time and sample number in the Monte Carlo simula
tion. The simplicity of the model coupled with the 
efficiency of the method allows observation of a 
number of folding-unfolding transitions within a 
single simulation. 

Some of the most interesting observations in the 
calculations by Skolnick's group described above 
required imposition of weak local conformational 
preferences taken from an actual protein structure;192 

however, the formation of well-defined three-dimen
sional folds is still of great interest. Moreover, 
folding trajectories, with stable intermediates, could 
be generated, and structures resembling the actual 
structures of apoplastocyanin and of triose phosphate 
isomerase were obtained, with 6 and 3 A rms devia
tions, respectively, for the Ca positions.192 It should 
be stressed that these results, however, cannot be 
considered indicative of a general solution of the 
protein folding problem, because they used specific 
local preferences derived from actual knowledge of 
the experimental structures. 

From a more practical point of view, these results 
of Skolnick and co-workers seem to suggest that more 
accurate prediction of local structure preferences may 
be exploited in generation of topologically correct 
three-dimensional structures to a greater extent than 
it was thought possible. In this context, we point out 
that the proposed "solution" of the Levinthal paradox 
by Zwanzig et al. is consistent with these results:191 

biases in local conformational preferences toward the 
"native" states may accelerate the folding process 
significantly. This does not, of course, mean that the 
existence of these biases in "real" proteins has been 
demonstrated, or that the Zwanzig model represents 
the folding behavior of proteins accurately; in fact, 
this model has been criticized recently by Karplus 
and Shakhnovich.30 These authors argue that Zwan-
zig's approach is more descriptive of helix-coil 
transitions where long-range interactions do not play 
an essential role, and as such, it misses the funda
mental physics of protein folding. In the apoplasto
cyanin calculations as well as in more recent work, 
Skolnick and co-workers have started using pseudo-

potentials derived from the protein structural data 
base, initially with the parameters of Miyazawa and 
Jernigan.90 Thus, their work has taken a more 
practical angle, and their models are now in principle 
capable of handling real amino acid sequences.10 

Recently, Skolnick and co-workers have removed 
the dependence on preset local preferences and have 
proposed a more general approach.434 Although it is 
not clear if the many-body terms in their potential 
functions can be defined for general sequences with 
no previous knowledge of the type of structure, their 
recent predictions of a pair of designed a-helical 
proteins are remarkable. In accordance with experi
ments reported later by DeGrado and co-workers,767 

they proposed that an earlier version of the designed 
protein would not show preference for one handed
ness of a four-helix bundle over the other.434 They 
also proposed that a second version of the designed 
sequence would show a definite preference for right-
handed over left-handed four-a-helix bundles. We 
point out that the designed sequences have a large 
degree of structural redundancy built in, and in some 
sense may be "easier" to fold than an arbitrarily 
chosen natural sequence. In fact, these designed 
sequences may be the real-life counterparts of the 
"optimal folding sequences" studied by Shakhnovich 
and co-workers.754,755 An alternative view, perhaps 
more consistent with the recent work of Shakh
novich,75515 may be that most natural sequences are 
"easy to fold" but do so with some "exact" set of 
potentials, while simulations are forced to use ap
proximate energy forms. By conforming to the best 
understood protein structural principles, DeGrado's 
proteins may be seen then as "easy to simulate" (and 
thus, to fold) with approximate potentials that reflect 
those same principles. 

An innovative approach to modeling on a lattice 
has been presented by Covell and Jernigan.768 They 
generate all conformations of a self-avoiding virtual-
bond chain on a lattice that is restricted in size and 
shape to the volume occupied by a specific protein in 
its native state. A face-centered cubic lattice is used, 
because it is possible to fit the virtual-bond repre
sentations of the actual structure of five small 
proteins, having 36-62 amino acids, respectively, on 
this lattice with an rms deviation of about 1 A. The 
total number of lattice conformations for these pro
teins ranges from about 800 to 15 000. The resulting 
conformations were ranked according to energy, 
using the empirical potential energy function of 
Miyazawa and Jernigan90 for contact pairs. In all 
five cases, the conformation closest to the actual 
native structure of the protein fell within the lowest 
2% of all conformations generated. 

Covell and Jernigan propose that this procedure 
can be used to determine a small group of favorable 
ways of folding a specific amino acid sequence within 
a restricted space, for use as starting points in more 
detailed computations. The search method is quite 
efficient, but its utility for the prediction of an 
unknown protein structure depends on the possibility 
of delineating the restricted space narrowly. It was 
suggested that preliminary X-ray crystallographic 
data might supply this information (see, for example, 
the work of Subbiah on solution of the phase problem 
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in protein crystallography769). The size restriction of 
the lattice is critical; however, the insertion of a mere 
two additional lattice points increased the number 
of conformations generated by an order of magni
tude.768 

More recently, Covell has tested a novel Monte 
Carlo procedure for folding of lattice proteins without 
imposing such strong shape constraints.770 He still 
uses the Miyazawa-Jernigan contact potentials, 
together with the constraints imposed by polypeptide 
chain connectivity and by excluded volume consid
erations. Tests with real protein sequences led to 
relatively high rms deviations from the native con
formations; in terms of these deviations, these results 
are not much better than those obtained much earlier 
by Kuntz et al.729 and others. 

A similar lattice approach is that of Hinds and 
Levitt,771 where mappings containing two or more 
amino acids per lattice point are explored, together 
with empirical contact pair potentials. At the very 
least, the methodologies of Hinds and Levitt, and of 
Covell and Jernigan768 will be of great utility in 
testing and improving different versions of these pair 
potentials, which, as described below, are still in 
great need of improvement. 

Rabow and Scheraga have formulated the protein-
folding problem in neural network optimization 
terms, using a method called lattice neural network 
minimization (LNNM).306 The conformation of a 
protein is represented as an array of the amino acid 
sequence versus position on a three-dimensional face-
centered cubic lattice (see also section ILB.6), with 
the Miyazawa-Jernigan energy function90 defined in 
terms of the array variables. The energy function is 
minimized to locate the global minimum energy for 
the conformation of the protein. The LNNM method 
found the global minimum for a seven-residue pep
tide in all of the 15 runs carried out. The time for 
each run was ~30 s on one processor of an IBM 3090 
computer. For a nine-residue peptide, the global 
minimum was found in seven out of 15 runs in ~50 
s per run; the global minimum or the second lowest 
minimum was found in 10 of the runs. Starting from 
a uniform array for the protein crambin (46 residues) 
on the lattice, the energy of the crambin array was 
minimized and a compact low-energy structure was 
found in ~25 min of CPU time. Its energy was much 
lower than that of the native protein, suggesting that 
there are inadequacies in the Miyazawa-Jernigan 
potential. The LNNM method was also applied to 
the prediction of what were previously called nucle-
ation sites751 but are more properly called chain-
folding initiation sites (CFIS)333 of a protein. LNNM 
correctly predicted the CFIS for the two proteins 
examined, RNase S and T4 lysozyme. 

Also of interest is the work of Head-Gordon and 
Stillinger on a two-dimensional "toy" model of protein 
folding.772'773 They have started to use this model to 
develop a deeper understanding of local regular 
structure prediction schemes, especially methods 
based on neural networks. In this toy model some 
of the confounding factors in predictions of real 
proteins are removed. For example, one can start 
with a hypothetical data base that contains all the 
possible examples of conformations for short seg

ments. As in other work with simplified models, the 
hope is that insights obtained in this artificial system 
could be of use in studies of more realistic models 
for proteins. 

Thirumalai and co-workers have studied dynamical 
aspects of simplified off-lattice protein models.774'775 

In their most recent work, they have examined a 
series of two-dimensional lattice models. The novel 
aspect of this work is the characterization of the 
energy landscape by exact enumeration, and the 
partial elucidation of connecting pathways by exten
sive Monte Carlo pseudo-dynamics using the Me
tropolis algorithm.776 

Results from work on simplified continuum, off-
lattice, models can provide new insights into the 
protein-folding process, but they can also help to 
validate (or invalidate) some of the observations 
recorded in lattice protein calculations. In this 
respect, it is important to mention again the quan
titative differences between off- and on-lattice calcu
lations regarding the correlation between compact
ness and formation of local regular structures.745'746 

By the same token, the simulations by Fukugita et 
al.777 of a continuum two-dimensional protein-like 
polymer confirm one of the main results obtained by 
Lau and Dill747 and by Shakhnovich and co-work
ers715,754'755 using two- and three-dimensional lattice 
calculations, respectively. This result is that folding 
is a rare phenomenon in the sense that only a very 
limited number of sequences will fold given generic 
interaction potentials. Fukugita et al. remark that 
one would expect a large difference in the magnitude 
of energy barriers between lattice and continuum 
models,777 with the former being higher; this fact 
makes the agreement on this issue even more sig
nificant. 

IV. Concluding Remarks 

The past 40 years have witnessed a dramatic 
transition in the view of a protein molecule from a 
colloidal particle, described as a rigid ellipsoid of 
revolution, to a flexible organic molecule with a 
specifiable covalent and three-dimensional structure.2 

By the development and application of X-ray crystal-
lographic and experimental physical methods, such 
as NMR and other spectroscopical techniques, it has 
been possible to elucidate the structures of protein 
molecules and functional complexes thereof in the 
solid state and in solution. Theoretical physical 
methods, including conformational energy computa
tions, have contributed in an equally useful way to 
an understanding of the intra- and intermolecular 
interactions that give rise to polypeptide and protein 
structure. On the basis of the combination of experi
ment and theory, considerable knowledge has been 
acquired as to how polypeptide chains fold into the 
native conformations of proteins and then interact 
with other molecules to express their biological 
function. 

The basic methodology for calculating structures 
of peptides and proteins is now well developed, as 
summarized in section II. Nevertheless, there is still 
significant room for improvement of potential func
tions, not only in the numerical values of the param
eters used but also in the forms of the functions 
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themselves. A number of significant refinements 
have been introduced and tested in model systems; 
these include use of anharmonicity in bond angle 
bending, the introduction of nonadditive potentials, 
particularly by the use of polarization to treat 
electrostatics, and improved treatment of hydration, 
especially by efficient but accurate implicit models. 
Effective generalization of these refinements for use 
in calculations of polypeptide and protein structure 
can be foreseen in the very near future. 

With the recent development of various efficient 
approaches to overcome the multiple-minima prob
lem, the problem has been in some sense solved for 
small oligopeptides, as well as for regular-repeating 
structures and assemblies of fibrous proteins. It can 
reasonably be expected that the current extension of 
these methods to globular proteins will result in 
efficient searches of their conformational space in the 
near future. Advances in computer hardware and 
software, especially the wider use of parallelism, will 
speed up computations, making practical the applica
tion to larger molecules. The point may have been 
reached where wider applicability of these techniques 
is becoming limited by the accuracy of the potential 
energy functions used to describe the energetics of 
polypeptide and protein structures. 

A number of the computational methods reviewed 
here have been developed first by applying them to 
various model systems, where the computed results 
could be checked against known structures, in order 
to provide a verification of the algorithms and of the 
parameters. Model systems used for this purpose 
have included poly(amino acid)s that form regular 
structures, small linear and cyclic oligopeptides, and 
fibrous proteins such as collagen (sections III.A-D). 
In addition to providing necessary tests, computa
tions on these model systems have resulted in some 
new predictions, and they have increased our under
standing of the interactions that play a significant 
role in the folding of proteins. 

It has been possible to extend the computations to 
globular proteins in various ways, viz. by using them 
in conjunction with experimental methods for struc
tural refinement, by applying them in a predictive 
way such as in the calculation of structures of 
homologous proteins, or by using them to gain 
information about the role of short- and long-range 
interactions in the folding process (section III.E). 
Computations have led to useful insights into the 
reasons underlying the properties of proteins. 

While dramatic results have been achieved in the 
last decade, there is still much more to be learned 
about the details of protein-folding pathways and of 
molecular interactions. In particular, many dynamic 
processes important in protein function, most notably 
the folding process itself, remain beyond the time 
scales that can be studied with present simulation 
techniques. The further development of the theoreti
cal methods that will undoubtedly occur in the 
foreseeable future should further increase our un
derstanding of protein structure and function. 
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Note Added in Proof 

Since this review was completed, several reports 
on efficient molecular dynamics simulations of 
polypeptides in explicit solvent have appeared. They 
are listed in refs 778-780. 
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